



# Rec15/25

Automatic Circuit Recloser 15 kV, 16 kA, 630 A 27 kV, 12.5 kA, 630 A

Product Guide

## Contents

| 1. Introduction                                               | 3  |
|---------------------------------------------------------------|----|
| 1.1 Abbreviations                                             |    |
| 2. Presentation                                               | 7  |
| 2.1 Product application field                                 |    |
| 2.2 Key benefits.                                             |    |
| 2.3 Compliance                                                |    |
| 3. Product coding.                                            |    |
|                                                               |    |
| 3.1 Recloser coding.                                          |    |
| 3.2 Recloser components coding                                |    |
| 4. Technical parameters                                       |    |
| 5. Design and operation                                       |    |
| 5.1 Design                                                    |    |
| 5.1.1 Outdoor switching module                                |    |
| 5.1.2 Protective Tank                                         |    |
| 5.1.3 Current and Voltage Sensing                             | 21 |
| 5.1.4 Main Contacts Position Indicator                        |    |
| 5.1.5 Vacuum Circuit Breaker                                  | 21 |
| 5.1.6 Recloser control                                        |    |
| 5.1.7 Recloser Control Cubicle                                |    |
| 5.1.8 Control cable (Umbilical).                              |    |
| 5.1.9 Control Panel Module (CPM)                              |    |
| 5.1.10 Recloser Control Module (RCM).                         |    |
|                                                               |    |
| 5.1.11 Power Supply Filter Module (PSFM)                      |    |
| 5.1.12 Rechargeable Battery (BAT).                            |    |
| 5.1.13 Bluetooth Module (BTM).                                |    |
| 5.1.14 I/O Module (IOM)                                       |    |
| 5.2 Operation                                                 |    |
| 5.2.1 Opening                                                 |    |
| 5.2.2 Closing                                                 |    |
| 6. Functionality                                              | 31 |
| 6.1 Protection                                                |    |
| 6.1.1 Overview                                                |    |
| 6.1.2 Protection Elements                                     |    |
| 6.2 Measurement                                               |    |
| 6.2.1 Overview                                                |    |
| 6.2.2 Inrush filter.                                          |    |
| 6.3 Communication.                                            |    |
| 6.3.1 Overview                                                |    |
|                                                               |    |
| 6.3.2 Personal Computer Interface (PCI)                       |    |
| 6.3.3 Telecommunication Interface (TCI)                       |    |
| 6.3.4 Digital input/output interface (IOI)                    |    |
| 6.4 Telarm Dispatcher Interface (TDI)                         |    |
| 6.5 Indication                                                |    |
| 6.5.1 Man-Machine Interface (MMI)                             |    |
| 7. Application notes                                          | 53 |
| 7.1 Mounting kits                                             |    |
| 7.1.1 Mounting kit for front installation                     |    |
| 7.1.2 Complete mounting kit for front installation            |    |
| 7.1.3 Mounting kit for front or lateral installation          |    |
| 7.1.4 Complete mounting kit for front or lateral installation |    |
| 7.2 Primary line connections.                                 |    |
| 7.2.1 Bushing extensions.                                     |    |
| 7.2.1 Busing extensions                                       |    |
|                                                               |    |
| 7.3 Secondary equipment                                       |    |
| 7.3.1 Voltage transformers (VT)                               |    |
| 7.3.2 Telecommunication equipment.                            |    |
| 7.4 Auxiliary supply                                          |    |
| Appendix 1. Type tests                                        |    |
| Appendix 2. Dimensions                                        |    |

# 1. Introduction

This Product Guide describes automatic circuit reclosers manufactured by Tavrida Electric.

Tavrida Electric autoreclosers are designed for overhead distribution lines and outdoor substation switchgear with rated voltage up to 27kV.

The main components of the autorecloser are:

### **Outdoor Switching Module (OSM)**

The air insulated OSM incorporates a Tavrida Electric vacuum circuit breaker with per phase magnetic actuators housed in a tank made of corrosion resistant aluminium alloy. Six main circuit bushings are made from UV stable polymer and are completely covered with silicone rubber bushing boots. Each bushing has built-in current and voltage sensors for protection, measurement and indication purposes.

### **Recloser control (RC)**

The RC is a microprocessor based controller that provides protection, metering, data logging and communication functions.

### **Umbilical cable**

The Umbilical cable provides connection between the OSM and the RC.

This guide describes recloser technical parameters, functionality and operating principles. The purpose of the document is providing necessary product information for application engineers and utilities technical personnel.

List of related technical documents:

| Document name            | Target audience                                                                   | Purpose of the document                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User guide               | Procurement representatives,<br>operatives, fitters, commission-<br>ing engineers | Brief product description<br>Describing transportation and storage limitations<br>Describing necessary product check-ups, installation and commissioning<br>Describing operation and service<br>Troubleshooting description<br>Disposal requirements description |
| Routine test certificate | Customer procurement service                                                      | Product identification, brief technical parameter description, routine test data                                                                                                                                                                                 |



## 1.1 Abbreviations

- ABR Automatic Backfeed Restoration
- BAT Battery
- BF **Bolted Fault**
- BTM **Bluetooth Module**
- **CC** Control Cable (Umbilical)
- CLP Cold Load Pickup
- CPM Control Panel Module
- CU Current unbalance
- D Delaved
- DPS Door Position Switch
- EF Earth Fault protection element
- EF1 Low set Earth Fault protection element for Delayed trips
- EF2 Low set Earth Fault protection element for Instantaneous trips
- EF3 High set Earth Fault protection element for Instantaneous trips
- EL Event Log
- L Instantaneous
- I/O Input/Output
- 101 Input/Output Interface
- IOM Input/Output Module
- LCD Liquid Crystal Display
- HL Hot Line protection element
- LP Load Profile
- Loss of Supply protection element LS
- ME Measurement element
- ML Malfunction Log
- MMI Man Machine Interface
- MPM Main Processor Module
  - OC Overcurrent protection element
- OC1 Low set Overcurrent protection element for Delayed trips
- OC2 Low set Overcurrent protection element for Instantaneous trips
- OC3 High set Overcurrent protection element for Instantaneous trips
- OCR Overcurrent protection element with reclosing
- OSM Outdoor Switching Module
- PCI Personal Computer Interface
- PSFM Power Supply Filter Module
- RC **Recloser Control Cubicle**
- RCM **Recloser Control Module**
- RTC Real Time Clock
- RTU Remote Telecommunication Unit
- SCADA Supervisory Control And Data Acquisition
  - SD Source Detector
  - SEF Sensitive Earth Fault
  - Sensitive Earth Fault with reclosing SEFR
  - TEL Tavrida Electric



- TCI Telecommunications Interface
- TDI Telarm Dispatcher Interface
- UF Under Frequency
- UV Under Voltage
- VRC Voltage Reclosing Control
- VT Voltage Transformer
- VU Voltage unbalance
- **ZSC** Zone Sequence Coordination

# 2. Presentation

## 2.1 Product application field

Reclosers can be applied in radial or loop overhead distribution lines. The main applications are:

- Clearing transient faults by performing autoreclosing;
- Isolating sustained faults in the overhead line network;
- Isolating sustained faults in a network where conventional protection coordination is not possible;
- Automatic backfeed restoration.

The recloser can also be used at outdoor substations feeding overhead distribution lines. It may be used as:

- Substation outgoing feeder with autoreclosing functionality;
- Substation busbar coupler breaker with backfeed restoration capability;
- Substation switchgear incoming feeder breaker with overcurrent protection for busbar faults, undervoltage protection for backfeed restoration purposes and interfaces for transformer non-electrical protection.

## 2.2 Key benefits

Tavrida Electric reclosers provide the following competitive advantages:

#### Maintenance free

Lifetime maintenance and supervision free switching module providing 30 000 rated current and 50 full rated short circuit O-CO operations.

#### Lightweight

Tavrida Electric's light weight vacuum circuit breaker and robust aluminium tank result in a total weight of 68 kg for OSM15\_Al\_1 and 72 kg for OSM25\_Al\_1, making it the most lightweight outdoor switching module on the market.

As the result shipment, handling and installation are simpler and faster.

#### Sophisticated measurements system

All OSMs are equipped with six voltage sensors built into the bushings. It makes the recloser an ideal device for self-healing loop automation solutions.

Linear current sensor — Rogowski coils, used for both phase and ground currents measurements greatly improve protection accuracy and simplify protection coordination.

#### • Environmentally Friendly

OSM15\_Al\_1 and OSM25\_Al\_1 are outdoor switching modules with patented combined air and solid insulation. The design reliability is proven by the most severe climate and very heavy pollution tests at the Koeberg Insulator Pollution Test Station (KIPTS) in South Africa.

## 2.3 Compliance

Tavrida Electric autorecloser compliance to international standards has been confirmed by large international test centers.

The list of test reports is presented in Appendix 1.

# 3. Product coding

## 3.1 Recloser coding

Rec15\_Al1\_5s (Par1\_Par2\_Par3\_Par4\_Par5\_Par6)

| Product group |  |
|---------------|--|
| OSM type      |  |
| RC type       |  |

| Table 1 | - | Recloser | coding | description |
|---------|---|----------|--------|-------------|
|---------|---|----------|--------|-------------|

| Parameter                         | Parameter description               | Applicable options                                                                         | Code |
|-----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------|------|
| Dor1                              | DC language                         | English                                                                                    | EN   |
| Par1                              | RC language                         | Portuguese                                                                                 | PT   |
| Par2                              | Bluetooth module for PCI connection | No                                                                                         | 0    |
| PdIZ                              | Bluetooth module for PCI connection | Yes                                                                                        | 1    |
|                                   |                                     | No                                                                                         | 0    |
| Par3                              | Input/Output module                 | Input/Output module 100/220 VDC                                                            | 220  |
|                                   |                                     | Input/Output module 24/60 VDC                                                              | 60   |
|                                   | Umbilical cable length              | 5 meters                                                                                   | 5    |
| Par4                              |                                     | 7 meters                                                                                   | 7    |
|                                   |                                     | 12 meters                                                                                  | 12   |
|                                   |                                     | No                                                                                         | 0    |
|                                   |                                     | Front installation                                                                         | 7    |
| Par5                              | Mounting bracket type               | Complete mounting kit for front installation                                               | 7M   |
|                                   |                                     | Front or lateral installation                                                              | 8    |
|                                   |                                     | Complete mounting kit for front or lateral installation                                    | 8M   |
|                                   |                                     | Default                                                                                    | 0    |
| _                                 | Customination                       | Contact your local sales representative to customize the recloser as per your requirements | 1    |
| Par6                              | Customization                       |                                                                                            | 2    |
| recloser as per your requirements |                                     |                                                                                            |      |

#### Par1

Parameter describes control panel interface language.

#### Par2

Parameter describes bluetooth module availability.

Bluetooth Module provides point-to-point wireless connection between the RC and the personal computer.

#### Par3

Parameter describes availability and auxiliary voltage of Input/Output module (IOM). For IOM information refer to section 5.1.14 and Table 11.

#### Par4

Parameter describes the length of Umbilical cable connecting the RC to the OSM. For Umbilical information refer to section 5.1.8

#### Par5

Parameter describes availability and type of mounting kit. For details on applicable mounting kits refer to section 7.1.

#### Par6

Parameter describes recloser modifications designed on particular customers requests.

Contact your local sales representative to choose the option suitable for you.

## 3.2 Recloser components coding

OSM coding

|                          | OSM15_Al_ | 1 (Par1) |
|--------------------------|-----------|----------|
| Outdoor switching module |           |          |
| Rated voltage, kV        |           |          |
| Tank material            |           |          |
| OSM type                 |           |          |

Table 2 - OSM coding description

| Parameter | Parameter description | Applicable options                                         | Code |
|-----------|-----------------------|------------------------------------------------------------|------|
| Par1      | OSM modification      | OSM without intermediate unit and with place for nameplate | 4    |

Par1

Parameter describes the OSM modification versions.

For details refer to drawings in Appendix 1.

Each OSM has the following nameplates:

- Serial number plate
- Parameters nameplate

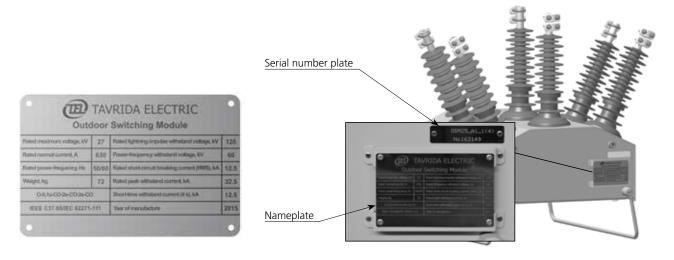



Figure 1 Nameplate of OSM Figure 2 Nameplate and serial number plate placement

The serial number plate contains information about the OSM type and serial number.

Parameters nameplate describes the OSM technical parameters.



#### RC5\_3 (Par1\_Par2\_Par3\_Par4\_Par5)

Recloser control RC type

| Table 3 | 3 - | RC | coding | description |
|---------|-----|----|--------|-------------|
|---------|-----|----|--------|-------------|

| Parameter | Parameter description                                                                          | Applicable options                                                                            | Code |
|-----------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
| D1        | Control nonel language                                                                         | English                                                                                       | EN   |
| Par1      | Control panel language                                                                         | Portuguese                                                                                    | PT   |
| Daw2      | Bluetooth module for PCI connection                                                            | No                                                                                            | 0    |
| Par2      | Bluetooth module for PCI connection                                                            | Yes                                                                                           | 1    |
|           |                                                                                                | No                                                                                            | 0    |
| Par3      | Input/Output module availability Input/Output module 100/220 VDC Input/Output module 24/60 VDC | Input/Output module 100/220 VDC                                                               | 220  |
|           |                                                                                                | Input/Output module 24/60 VDC                                                                 | 60   |
|           | Outlet for laptop power supply     No   Contact your local sales representative to choose      | 0                                                                                             |      |
| Par4      |                                                                                                | 1                                                                                             |      |
|           |                                                                                                | the option suitable for you                                                                   |      |
|           |                                                                                                | Default                                                                                       | 0    |
|           | Customization                                                                                  | Contact your local sales representative to customize<br>the recloser as per your requirements | 1    |
| Par5      |                                                                                                |                                                                                               | 2    |
|           |                                                                                                |                                                                                               |      |

#### Par1

Parameter describes control panel interface language.

#### Par2

Parameter describes bluetooth module availability.

Bluetooth Module provides point-to-point wireless connection between the RC and the personal computer.

#### Par3

Parameter describes availability and auxiliary voltage range of Input/Output module (IOM). For IOM information refer to section 5.1.14 and Table 11.

#### Par4

Parameter describes availability and type of additional recloser modifications performed for particular applications.

Contact your local sales representative to choose the option suitable for you.

Each RC5\_3 has adhesive serial number plate and riveted stainless steel nameplate on the internal door. The nameplates contain information about the RC type, serial number, the RC ratings and manufacture date.



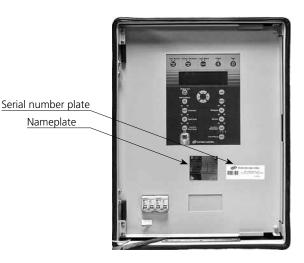



Figure 3 Nameplate and serial number plate of RC

Figure 4 RC nameplate placement

| Control cable coding |                    | Umbilical_4(Par1) |
|----------------------|--------------------|-------------------|
|                      | Control cable name |                   |
|                      | Control cable type |                   |

Umbilical\_4 is the control cable that connects an RC5\_3 with an OSM.

Table 4 - Umbilical coding description

| Parameter | Parameter description       | Applicable options | Code |
|-----------|-----------------------------|--------------------|------|
|           | Par1 Umbilical cable length | 6 meters           | 6    |
| Par1      |                             | 7 meters           | 7    |
|           |                             | 12 meters          | 12   |

Par1

Parameter describes the length of the Umbilical cable. For details on the Umbilical cable refer to section "5.1.8 Control cable (Umbilical)" of this guide.

Each Umbilical cable has a steel cable tie with serial number.



Figure 5 Example of the Umbilical cable tie with serial number

# 4. Technical parameters

| Parameter                                                                                             | OSM15_Al_1                                                       | OSM25_Al_1       |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|--|
| Rated data                                                                                            |                                                                  | 1                |  |
| Rated maximum voltage (Ur)                                                                            | 15.5 kV                                                          | 27 kV            |  |
| Rated short-duration powerfrequency withstand voltage (Ud), 1 min dry                                 | 50 kV                                                            | 60 kV            |  |
| Rated short-duration powerfrequency withstand voltage, 10s wet                                        | 45 kV                                                            | 50 kV            |  |
| Rated lightning impulse withstand voltage (peak) (Up)                                                 | 110 kV                                                           | 125 kV           |  |
| Rated continuous current (Ir)                                                                         | 63                                                               | 0 A              |  |
| Rated cable-charging current switching                                                                | 10 A                                                             | 25 A             |  |
| Rated line-charging current switching                                                                 | 2 A                                                              | 5 A              |  |
| Rated short-circuit breaking current (lsc)                                                            | 16 kA                                                            | 12.5 kA          |  |
| Rated peak withstand current (lp)                                                                     | 41.6 kA                                                          | 32.5 kA          |  |
| Rated short-time withstand current (lk)                                                               | 16 kA                                                            | 12.5 kA          |  |
| Rated duration of short circuit (tk)                                                                  | 4 s                                                              | 4 s              |  |
| Rated frequency (fr)                                                                                  | 50/60 Hz                                                         |                  |  |
| Switching performance                                                                                 |                                                                  |                  |  |
| Mechanical life (CO-cycles)                                                                           | 30                                                               | 000              |  |
| Operating cycles, rated current (CO-cycles)                                                           | 30                                                               | 000              |  |
| Electrical endurance, breaking current (O-CO cycles)                                                  | 5                                                                | 50               |  |
| Closing time, not more than                                                                           | 77                                                               | ms               |  |
| Opening time for overcurrent protection according to IEC 62271-111/C37.60, not more than (at I>2xlp)  | 43                                                               | ms               |  |
| Clearing time for overcurrent protection according to IEC 62271-111/C37.60, not more than (at I>2xlp) | 51 ms                                                            |                  |  |
| Rated operating sequence                                                                              | O-0.1s-CO-2                                                      | 2s-CO-2s-CO      |  |
| General information                                                                                   |                                                                  |                  |  |
| Main circuit resistance                                                                               | < 85 µOhm                                                        | < 95 µOhm        |  |
| Weight                                                                                                | 68 kg                                                            | 72 kg            |  |
| Altitude                                                                                              | 2000 m (derating according to ANS<br>C37.60 applied above 1000m) |                  |  |
| Humidity                                                                                              | 100%, condensing                                                 |                  |  |
| Solar Radiation                                                                                       | ≤ 1.1 kW/m²                                                      |                  |  |
| Temperature Range                                                                                     | -40 °C                                                           | +55 °C           |  |
| Type of driving mechanism                                                                             | Monostable ma                                                    | ignetic actuator |  |
| Pollution level                                                                                       | very heavy (as                                                   | per IEC 60815)   |  |

Main technical data and recloser technical parameters are presented in tables below.

#### Table 6 - Sensors parameters

| Parameter                            | Phase current sensors  | Zero-sequence current sensor | Voltage sensors |
|--------------------------------------|------------------------|------------------------------|-----------------|
| Range where accuracy is provided     | 1-8000 <sup>1)</sup> A | 1 8000 <sup>1)</sup> A       | 0.3 27 kV       |
| Range of sensor coefficients at 20°C | 1.8 2.2 V/kA           | 1.8 2.2 V/kA                 | 0.1 0.2 V/kV    |

Notes:

<sup>1)</sup>The Rogowski coil can measure current in a wide range but for the purpose of over-voltage, protection suppressors are fitted in the secondary circuits. These suppressors chop the signal from the Rogowski coil if primary current exceeds 8 kA.

Table 7 - Measurement accuracy<sup>1)</sup>

|                                                         | iable / incabarenterit actuacy           |                                     |
|---------------------------------------------------------|------------------------------------------|-------------------------------------|
| Parameter                                               | Basic error                              | Ranges where accuracy is guaranteed |
| Phase currents                                          | The greater of $\pm 1\%$ or $\pm 2A$     | 0630 A                              |
| Residual current <sup>2)</sup>                          | The greater of $\pm 5\%$ or $\pm 0.5A$   | 0400 A                              |
| Phase to earth voltages                                 | The greater of $\pm 1\%$ or $\pm 0.1$ kV | 0.316.0 kV                          |
| Line to line voltages                                   | The greater of $\pm 1\%$ or $\pm 0.1$ kV | 0.527.0 kV                          |
| Frequency<br>- at dF/dt<0.2 Hz/s<br>- at dF/dt<0.5 Hz/s | ±0.025 Hz<br>±0.05 Hz                    | 4555 Hz, 5565 Hz                    |
| Power factor                                            | ±0.02                                    | 01                                  |
| Active and reactive energy                              | ±2%                                      | 40630A, 4.527 kV                    |
| Active, reactive and total power                        | ±2%                                      | 40630A, 4.527 kV                    |

#### Notes:

<sup>1)</sup>If RC5\_3 sensor coefficient settings are configured in accordance with guidelines in Table 6 of this guide. Error is measured at normal climatic conditions.

<sup>2)</sup>Note that overcurrent protection pickup setting value shall not exceed SEF pickup setting value times 300.

|                                                                                       | Table 8 - Electromagnetic compatibility |                           |  |
|---------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|--|
| Parameter                                                                             | Rated value                             | Applicable standard       |  |
| Rated power frequency voltage (1 min)                                                 | 2 kV                                    | IEC 60255-5               |  |
| Rated impulse voltage, kV at 0.5J                                                     | 5 kV                                    | IEC 60255-5               |  |
| Electrical fast transient/burst immunity                                              | 4 kV                                    | IEC 60255-22-4 (Level IV) |  |
| Surge immunity (applied to external AC voltage terminals)<br>- common<br>- transverse | 4 kV<br>2 kV                            | IEC 61000-4-5 (Level IV)  |  |
| Control elements surge withstand capability (SWC)                                     | 125 kV (7 kA)                           | IEEE C37.60-2003          |  |

### Table 9 - Power supply characteristics

. . .

| Parameter                                             | Value                                     |
|-------------------------------------------------------|-------------------------------------------|
| Supply voltage range, V                               | 85 ÷ 265 AC<br>110 ÷ 220 DC <sup>1)</sup> |
| Rated power consumption, VA, not more                 | 40                                        |
| Maximum power consumption, VA, not more               | 75                                        |
| Duration of operation without auxiliary supply, hours | 48                                        |

#### Notes:

<sup>1)</sup> Note that additional DC circuit breakers are required. For details refer to section "7.4 Auxiliary supply" of this guide.

| Та                       | Table 10 - Degree of protection |  |  |
|--------------------------|---------------------------------|--|--|
| Component                | Degree of protection            |  |  |
| Outdoor switching module | IP65                            |  |  |
| Recloser cubicle         | IP55                            |  |  |

Table 11 - I/O Module (IOM) parameters

|                                                                                                | able 11 % o module (form) parameters    |
|------------------------------------------------------------------------------------------------|-----------------------------------------|
| Digital inputs                                                                                 | Value                                   |
| Rated voltages of signal applied to digital inputs<br>- for IOM-04<br>- for IOM-03             | 12/24/30/48/60 V DC<br>110/125/220 V DC |
| Pickup voltage of signal applied to digital inputs<br>- for IOM-04<br>- for IOM-03             | Above 7 V<br>Above 100 V                |
| Reset voltage<br>- for IOM-04<br>- for IOM-03                                                  | Below 3 V<br>Below 30 V                 |
| Maximum continuous voltage of signal applied to digital inputs<br>- for IOM-04<br>- for IOM-03 | 75 V<br>275 V                           |
| Input resistance<br>- for IOM-04<br>- for IOM-03                                               | 3 kOhm<br>125 kOhm                      |
| Recognition time, ms - not more                                                                | 20                                      |
| Reset time, ms - not more                                                                      | 20                                      |
| Digital outputs                                                                                | Value                                   |
| Rated voltage                                                                                  | 250 VAC                                 |
| Rated current                                                                                  | 16 A                                    |
| Breaking capacity DC1 (at L/R=1ms): 30/110/220 V                                               | 16/0.3/0.12 A                           |
| Minimum switching load                                                                         | 500 mW (10V/5mA)                        |

### Table 12 - Rechargeable Battery (BAT) parameters

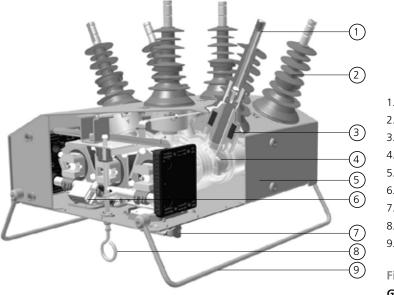
| BAT parameters                                                                                                                | Value                                           |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Type <sup>1)</sup>                                                                                                            | G26EPX EnerSys 0765-2003 sealed lead acid       |
| Rated voltage                                                                                                                 | 12 V                                            |
| Rated capacity                                                                                                                | 26 Ah                                           |
| Temperature range                                                                                                             | -40 °C+55 °C                                    |
| Maximum number of recharging cycles from full discharge state                                                                 | 300                                             |
| Relative capacity at different temperatures<br>- at -40°C<br>- at -20°C<br>- at 0°C<br>- at +25°C<br>- at +40°C<br>- at +55°C | 25 %<br>65 %<br>84 %<br>100 %<br>110 %<br>120 % |
| Expected battery life at average operating temperature, years<br>- at +20°C<br>- at +25°C<br>- at +30°C<br>- at +40°C         | 16<br>10<br>6.5<br>2.7                          |

#### Notes:

 $^{1)}\,\rm Only$  the battery types described in this guide can be used in the RC.

# 5. Design and operation




## 5.1 Design

## 5.1.1 Outdoor switching module

The OSM is equipped with six high voltage bushings with embedded current and voltage sensors. The bushings are covered by silicone rubber insulation which mount on the top of the tank and provide 500 mm (OSM15) or 860 mm (OSM25) creepage distance.

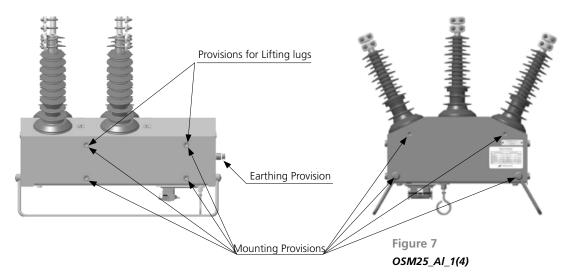
The bushings are marked with the terminal designation X1, X2 or X3 for the default source side and X4, X5 or X6 for the default load side.

The source and load side can be reversed in the RC settings if required.



- 1. Terminal
- 2. Six HV silicone bushings
- 3. Current sensors built into the bushings
- 4. Vacuum circuit breaker
- 5. Protective tank
- 6. Mechanical position indicator
- 7. Harting connector
- 8. Manual trip operation mechanism
- 9. Support rail

#### Figure 6


General arrangement of the OSM15\_Al\_1(4)

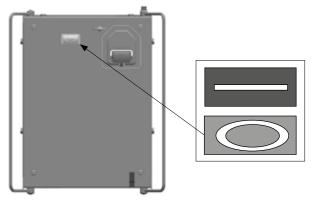
### 5.1.2 Protective Tank

The OSM tank is made of a corrosion resistant anodized aluminum alloy. The tank is coated with light gray RAL 7038 powder coating.

Threaded holes (M12x30) on each side of the tank allow the application of various kits and the OSM installation on various poles and structures. These threaded holes can also used to install a set of lifting lugs on the tank.

The earthing provision (M12x30 threaded hole) is labelled for identification.




## 5.1.3 Current and Voltage Sensing

Each bushing has embedded current and voltage sensors. Current sensing is performed by Rogowski coil sensors. The sensors on the X1, X2 and X3 terminals measure phase currents. The sensors on the X4, X5 and X6 terminals have secondaries connected in series for residual current measurement. Capacitive sensors for voltage measurement are inbuilt in all six bushings.

For details on sensor parameters refer to section "4. Technical parameters" of this guide.

## 5.1.4 Main Contacts Position Indicator

The position indicator is located under a protective cover at the bottom of the tank and is clearly visible from the ground. The indicator colour is red  $\blacksquare$  when the OSM is closed and green  $\blacksquare$  when it is open.

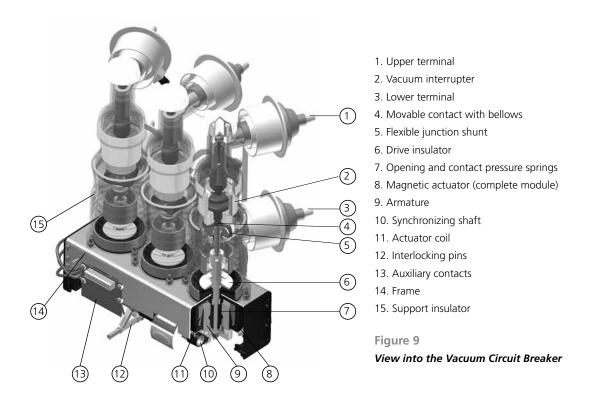


OSM15(25)\_AI\_1(4)

Figure 8 Main contact position indicator

## 5.1.5 Vacuum Circuit Breaker

The essence of OSM is Tavrida Electric vacuum circuit breaker. Tavrida Electric has simplified the mechanical structure of the vacuum circuit breaker to the greatest possible extent. It uses three single-coil magnetic actuators, one per pole. All switching elements of a pole are assembled along a single axis. All mechanical movements are therefore direct and linear. Three actuators are installed in a steel frame and mechanically linked by a synchronizing shaft.


Due to the design, any failure of critical components, such as mechanical latching, gears, chains, bearings and levers, tripping and closing coils, motors to charge springs are completely avoided.

Tavrida Electric manufactures vacuum interrupters that combine small dimensions with extremely long mechanical and electrical lifespan. The use of a specially designed axial magnetic field distribution provides even current density over the contact surface and consequently substantial improvement of vacuum interrupting performance.

Carefully selected contact material, expert contact design and optimized switching result in bounce-free closing.

The result is 30,000 C-O operations at rated current or 50 O-CO operations at maximum short-circuit breaking current without replacing or adjusting any parts of the circuit breaker.

Tavrida Electric vacuum circuit breakers are entirely maintenance free over a total life expectancy of at least 30 years.



## 5.1.6 Recloser control

Tavrida Electric Recloser Control provides the following advantages:

#### **Recloser Control Cubicle**

• Control panel with 6-lines-40-characters graphical LCD for clear event indication

#### Measurement

• The recloser control allows wide measurement capabilities, including phase, neutral and sequence currents, phase, phase-to-phase and sequence voltages, phase and 3-phase active and reactive power and energy. Logging is provided for key measurement data.

#### Protection

• The recloser control provides sophisticated protection functionality. The protection incorporates unique features that significantly simplify the protection engineering process. For details on protection functionality, refer to section "6.1 Protection" of this guide.

#### Monitoring

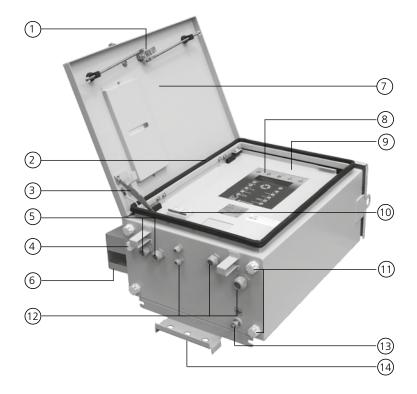
- Highly comprehensive log files:
- Event Log;
- Malfunction Log;
- Communication Log;
- Load Profile;
- Fault Profile;
- Change Messages;
- Protection Counters;
- Lifetime Counters;
- Log filling counters.

22 D TAVRIDA ELECTRIC

Communications

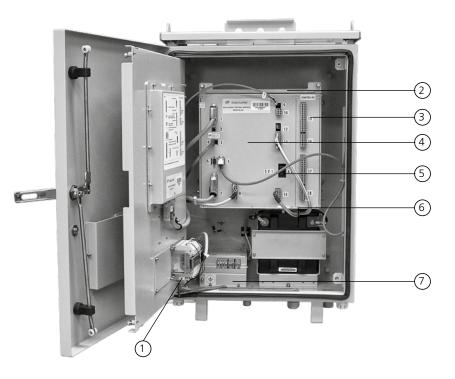
- Advanced communication functionality including support of different communication protocols and data communication equipment including Bluetooth.
- Exceptional configuration flexibility (ability to apply different sets of local and remote communication interfaces)

**User Software** 


Tavrida Electric Automated Relay Manager (TELARM) is designed for the specific needs of electrical distribution networks based on Tavrida Electric products. It allows:

- Downloading logs, profiles, oscillograms, settings, etc;
- Uploading protection, communication and system settings to the device;
- Recording logs (event, malfunction, communication etc.), provides detailed fault profile;
- Customizing control signal map for customer's SCADA applications.

### 5.1.7 Recloser Control Cubicle


The RC5\_3 recloser control cubicle is made from powder coated anodized aluminium, same as the OSM tank.

The RC5\_3 is a new generation control box that is the result of more than 20 years of recloser production and service experience. The RC5\_3 has 4 drainage filters installed in the bottom, one per corner. It allows effective RC dehumidification.



- 1. Three-point locking system
- 2. Rubber seal
- 3. Fixing rod
- 4. Output of internal installed Bluetooth Module (with protective cap)
- 5. 2 x IP65 glands for Power supply cable (ø 9...17 mm)
- 6. Anti-vandal cover of Control Cable
- 7. External door
- 8. Control panel module
- 9. Internal door
- 10. Thermal overcurrent circuit breakers
- 11. Dust proof drainage filter
- 12. IP65 glands:
  - 2 x ø 4...10 mm;
  - 1 x ø 9...17 mm;
  - 1 x ø 11...21 mm;
- 13. Earthing stud
- 14. Mounting brackets

Figure 10 RC5\_3 with internal door closed



- Door position switch
   Remote telecommunication unit (RTU) mounting plate
- 3. Place for Input/Output module (IOM)
- 4. Recloser Control Module (RCM)
- 5. Battery circuit breaker
- 6. Battery
- 7. Power supply filter module

#### Figure 11 RC5\_3 with internal door open

The external door has a padlock provision that is suitable for a shackle with up to a 12 mm diameter. The external door can be securely fixed in the open position.

The anti-vandal cover is fixed from inside the housing with one captive screw. It protects the Umbilical cable from unauthorised disconnection.





- 1. Control cable terminal
- 2. Anti-vandal cover
- 3. Locking stud
- 4. Captive screw

Figure 12

The RC5\_3 is equipped with different cable glands for:

- I/O cable or external RTU connections (ø 11...21 mm)
- antenna (ø 4.5...10 mm)
- power supply cable (ø 9...17 mm)

Cable glands are delivered with plastic caps installed.

The housing has provisions for protection against dust and water ingress.



The RC5\_3 is equipped with a Door Position Switch which is used for disabling the CPM when the RC door is closed, as well as providing a SCADA indication of RC door position.

The door position switch is mounted on the inside of the door and is actuated by the lever mounted opposite to the switch on the inside of the door.





RC5\_3 control cubicle has the following components:

- Control Panel Module (CPM);
- Recloser Control Module (RCM);
- Power Supply Filter Module (PSFM);
- Input/Output Module (IOM);
- Bluetooth Module (BTM);
- Battery (BAT).

Table 13 - Standard and optional components of RC5\_3

| Module or Component | Standard | Optional |
|---------------------|----------|----------|
| CPM                 | •        |          |
| RCM                 | •        |          |
| PSFM                | •        |          |
| BAT                 | •        |          |
| BTM                 |          | •        |
| IOM                 |          | •        |

## 5.1.8 Control cable (Umbilical)

Umbilical\_4 control cable connects the OSM actuators, metering and auxiliary wiring to the RC5\_3. Control cable wires are each protected by a PVC coated steel armoured sleeve. The cable is equipped with a heavy duty 42 pin male connector on the OSM side and a heavy duty 32 pin female connector on the RC side

Standard cable length is 5, 7 or 12 meters.



Figure 15 *Umbilical cable* 

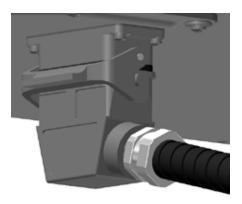



Figure 16 Heavy duty connector

## 5.1.9 Control Panel Module (CPM)

The CPM provides local control and indication functions to the RC5\_3.

The CPM has an integrated USB interface for PC connection.





Figure 17 CPM front (left) and back (right) views

## 5.1.10 Recloser Control Module (RCM)

The RCM is the recloser control module. The RCM provides protection, communication, measurement and control functions.



Figure 18 RCM connections with other RC modules

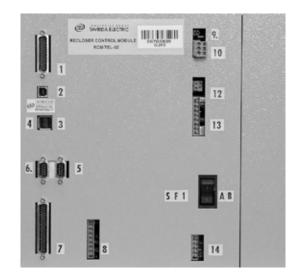



Figure 19 RCM without connections

## 5.1.11 Power Supply Filter Module (PSFM)

This module provides impulse noise protection for all internal modules of the RC5\_3.

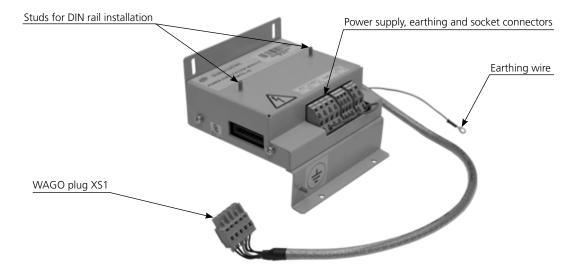



Figure 20 Power Supply Filter Module

The PSFM is connected to the RCM via a WAGO plug (Figure 20).

## 5.1.12 Rechargeable Battery (BAT)

The rechargeable battery provides the RC5\_3 with auxiliary power when the main auxiliary power is not present.

The power supply system is designed to provide optimum battery charging and to optimize battery lifetime.

## 5.1.13 Bluetooth Module (BTM)

The RC5\_3 can be supplied with a Bluetooth module on request (refer to section "3. Product coding" of this guide).

The Bluetooth module provides point-to-point wireless connection between the RC and a personal computer.

It is connected to the RCM via a USB cable (Figure 21).

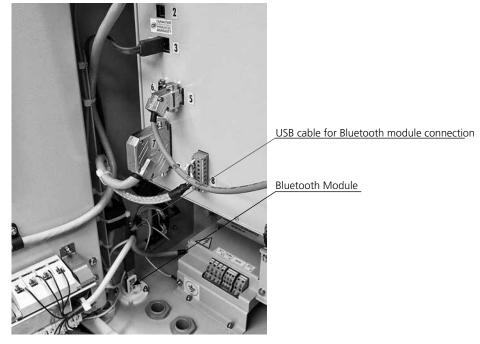



Figure 21 Bluetooth Module with its USB cable

## 5.1.14 I/O Module (IOM)

The RC5\_3 can be supplied with an IOM (Figure 22) on request (refer to section "3. Product coding" of this guide). The IOM provides control and indication functions via digital inputs/outputs (for details on functionality refer to section "6.3.4 Digital input/output interface (IOI)" of this guide). The IOM has twelve digital inputs and twelve digital outputs. The location of connectors (marked "15"..."18") with these inputs and outputs are shown in Figure 23.



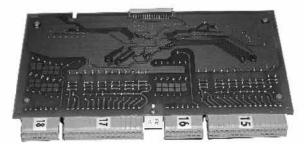
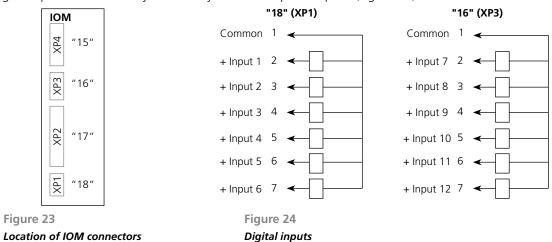




Figure 22 Overall view of IO module

Digital inputs are electrically isolated by means of opto-couplers (Figure 24).



Bistable relays with changeover contacts are used for the digital outputs as illustrated in Figure 25.

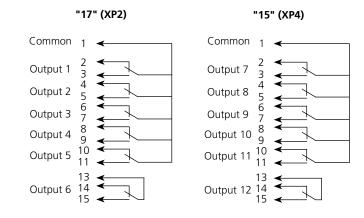



Figure 25 Digital outputs

# 5.2 Operation

## 5.2.1 Opening

## **Emergency opening**

A mechanical trip hook is located at the bottom of the tank. When the hook is pulled down, the OSM is mechanically tripped, locked in the OPEN position and electrically isolated from the driver. An "OSM Coil Isolated" warning event is generated by the recloser control to provide indication of a locked state. The OSM remains locked and cannot be operated until the trip hook is pushed back into the operating position.

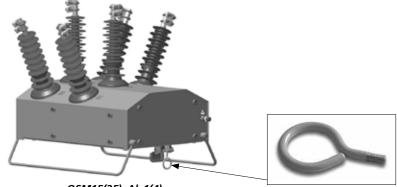
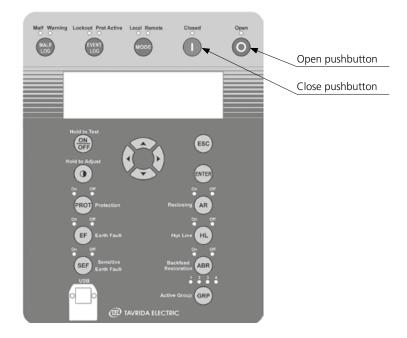



Figure 26 Mechanical trip hook

OSM15(25)\_Al\_1(4)




## **Opening via MMI**

To open OSM main circuits, push the green Open pushbutton labeled <sup>O</sup>. The Open command is executed in both Local and Remote mode.

## 5.2.2 Closing

#### **Closing via MMI**

To close OSM main circuits, push the red Close pushbutton labeled . The command is only executed if the Control Mode is set to "Local" and the mechanical trip hook is pushed back into its operating position. If the Control Mode is set to "Remote" and/or the mechanical trip hook is pulled down, the Close command will not be executed. The message "Pushbutton Closed is disabled in Remote mode" appears on the screen if Control Mode is "Remote". If the mechanical trip hook is pulled down the message "Excessive close time" will appear in the Malfunction log.





# 6. Functionality

# 6.1 Protection

## 6.1.1 Overview

The protection functionality is designed for the following key applications:

- Radial line recloser;
- Normally closed ring recloser
- Normally open ring recloser;
- Rezip recloser provides protection and reconfiguration in radial, ring and meshed networks where conventional protection grading is impossible.

The radial line recloser provides the protection against the following faults:

- Short circuit. Phase-to-phase and three-phase short circuits,
- Earth fault. Single-phase and double-phase earth faults;
- Bolted fault. Very low impedance fault, typically caused by human factor or mischance;
- Low current earth fault caused by high impedance phase to ground short circuit;
- Upstream broken conductor. Conductor touching ground at the sourse side;
- Downstream broken conductor. Conductor touching ground at the load side;
- Low system voltage caused by incorrect network operation mode, tap changer malfunction, undergeneration or islanding. The protection prevents sensitive load , such as motors, from overload and failure;
- Low system frequency caused by local undergeneration, islanding or generation system malfunctions;
- **High system voltage** caused by tap changer malfunctioning, overgeneration or islanding. The protection prevents sensitive load from damage;
- High system frequency caused by islanding.

The ring line recloser provides Loss of Supply and Automatic Backfeed Restoration functionality required for loop automation and self-healing schemes. The ring line recloser provides protection against the same faults as the radial line recloser. The ring line recloser has directional element to determine power flow direction. Ring line recloser has independently configurable sets of settings for direct and reverse power flow direction.

The Rezip recloser is used to automate various networks where traditional time and current grading is impossible. Unlike a conventional recloser, the Rezip recloser can be used in ring and meshed networks and self-healing schemes. Any number of Rezip reclosers can be connected in series.

Protection elements against short circuit, high impedance earth fault, low system voltage and low system frequency faults are provided with independent reclosing elements.

The ring line recloser is provided with a unique setting-free source detector. The source detector continuously detects the direction the power flows through the recloser main contacts.

Reclosing elements as well as the Automatic Backfeed Restoration are controlled by the Voltage Reclosing Control (VRC). The VRC blocks autoreclosing if power quality doesn't comply with customer requirements.

## Cold Load Pickup (CLP)

In some cases, when power supply is restored after prolonged outage, this results in greater than normal power demand. The main cause of this problem is the large number of electric heaters, furnaces, refrigerators, air conditioners and other thermostat-controlled loads. Higher current is often seen by protection as short circuit or overload, that result in circuit breakers automatically tripping to protect the system from overload, and the power goes off again. The CLP element enables temporary increasing current pickup setting to sustain cold load current and avoid tripping without compromising protection sensitivity. This functionality is applicable for radial recloser as only in this case can the duration of power interruption for a group of customers be observed.

#### 32 **TAVRIDA ELECTRIC**

## 6.1.2 Protection Elements

## **Source Detector (SD)**

The source detector element has two main functions:

- Provides power flow direction to directional protection elements (ring operation mode);
- Provides source side information for loss of supply protection element.

Protection elements: AR OC, HL, AR SEF, VU, CU, AR UV, AR UF, AR OV, AR OF and ABR operation depends on the source side being identified. If power flows from "Source +" side, then "Set +" protection settings are active, if power flows from "Source -" side, then "Set -" protection settings are active.

## **Bolted Fault (BF)**

This element provides instantaneous tripping when bolted fault conditions are detected. As it deals both with positive sequence voltage and current it provides better sensitivity for bolted faults than conventional highset overcurrent elements.

## Phase Overcurrent (OC)

This element provides protection against overloads, phase-to-phase and three-phase short circuits.

OC protection consists of six (6) individual overcurrent elements providing three stages of protection for both the Forward (Source+) and Reverse (Source-) powerflow directions: OC1+, OC1-, OC2+, OC2-, OC3+, OC3-

#### OC1

Phase overcurrent low set element OC1 is designated to provide time delayed trips. It is enabled in any selected sequence in the Overcurrent Reclosing element. "I" (Instantaneous) stands for accelerated and "D" (Delayed) for delayed step of overcurrent protection in an autoreclosing sequence.

#### OC2

Phase overcurrent low set element OC2 is designated to provide accelerated trips. If a sequence step in the Overcurrent Reclosing Element is set "D" OC2 element is disabled. If a sequence step in the Overcurrent Reclosing element is set "I" OC2 element is enabled.

#### **OC3**

Phase fault high set instantaneous element provides protection against phase high current faults with a reduced number of trips to lockout. If there is no intention to reduce the number of trips to lockout at high current faults, enabling this element is not recommended. OC1 and OC2 allow reduction of tripping time to any desired value at high currents.

For details on available TCC refer to Table 13 of this guide.

OC3 element settings are described in Table 14

## Earth Fault (EF)

This element provides protection against single phase and double phase earth faults.

EF protection consist of six (6) individual overcurrent protection elements providing three stages of protection for both the Direct (Source+) and Reverse powerflow (Source-) directions: EF1+, EF1-, EF2+, EF2-, EF3+, EF3-

#### EF1

Earth fault low set element EF1 is designated to provide time delayed trips. It is enabled in any selected sequence in the Overcurrent Reclosing element. "I" (Instantaneous) stands for accelerated and "D" (Delayed) for delayed step of overcurrent protection in an autoreclosing sequence. EF2

Earth fault low set element EF2 is designated to provide accelerated trips. If a sequence step in the Overcurrent Reclosing Element is set "D" EF2 element is disabled. If the sequence step in the Overcurrent Reclosing element is set "I" EF2 element is enabled.

EF3

Earth fault high set instantaneous element provides protection against high earth current faults with a reduced number of trips to lockout. If there is no intention to reduce the number of trips to lockout at high current faults, enabling this element is not recommended. EF1 and EF2 allow reduction of tripping time to any desired value at high currents.

For details on available TCC refer to Table 14 of this guide.

EF3 element settings are described in Table 15

Table 14 - TCC types

| Setting                                   | Designation | Range                                                                                                                                                                                                                                                     | Default |
|-------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Type of time<br>current<br>characteristic | TCC         | ANSI: Extremely Inverse (EI), Moderately Inverse (MI), Very Inverse (VI)<br>IEC: Extremely Inverse (EI), Very Inverse (VI), Inverse (I)<br>Definite Time (TD)<br>Custom: custom curves are available on request. Contact Tavrida Electric representative. | TD      |

#### Table 15 - High Set elements settings

| Setting           | Designation | Range          | Resolution | Default |
|-------------------|-------------|----------------|------------|---------|
| Operating mode    | Mode        | Enable/Disable | n.a.       | Disable |
| Pickup current, A | lp          | 40-6000        | 1          | 40      |
| Tripping time, s  | Tt          | 0.00-2.00      | 0.01       | 0.00    |

TCC can be uploaded to the RC5\_3 via TELARM configuration software.

Phase overcurrent and earth fault TD, IEC and ANSI time current curves settings are described in Tables 16–20.

#### Table 16 - OC/EF TD TCC settings

| Settings          | Designation | Range       | Step size | Factory defaults |
|-------------------|-------------|-------------|-----------|------------------|
| Tripping time, s  | Tt          | 0.00-100.00 | 0.01      | 10.00            |
| Pickup current, A | lp          | 10-6000     | 1         | 100              |

#### Table 17 - Available IEC TCC with parameters

| TCC type          | Designation | Α    | n    |
|-------------------|-------------|------|------|
| Extremely Inverse | IEC EI      | 80   | 2.0  |
| Very Inverse      | IEC VI      | 13.5 | 1.0  |
| Inverse           | IEC I       | 0.14 | 0.02 |

#### Table 18 - OC/EF IEC TCC settings

| Settings             | Designation | Range      | Step size | Factory defaults |
|----------------------|-------------|------------|-----------|------------------|
| Asymptote current, A | las         | 10-1280    | 1         | 100              |
| Time multiplier      | Tm          | 0.01-15.00 | 0.01      | 1.00             |

| Minimum time, s   | Tmin | 0.05-100.00 | 0.01 | 0.05  |
|-------------------|------|-------------|------|-------|
| Maximum time, s   | Tmax | 0.05-100.00 | 0.01 | 10.00 |
| Pickup current, A | lp   | 10-6000     | 1    | 100   |
| Time adder, s     | Та   | 0.00-2.00   | 0.01 | 0.00  |
| Reset time, s     | Tres | 0.00-20.00  | 0.01 | 0.00  |

#### Table 19 - Available ANSI TCC with parameters

| TCC type           | Designation | А      | В     | D    | n    |
|--------------------|-------------|--------|-------|------|------|
| Extremely Inverse  | ANSI EI     | 28.2   | 1.217 | 29.1 | 2.0  |
| Very Inverse       | ANSI VI     | 19.61  | 0.114 | 21.6 | 2.0  |
| Moderately Inverse | ANSI MI     | 0.0515 | 0.114 | 4.85 | 0.02 |

#### Table 20 - OC/EF ANSI TCC settings

| Settings             | Designation | Range       | Step size | Factory defaults |
|----------------------|-------------|-------------|-----------|------------------|
| Asymptote current, A | las         | 10-1280     | 1         | 100              |
| Time multiplier      | Tm          | 0.01-15.00  | 0.01      | 1.00             |
| Minimum time, s      | Tmin        | 0.05-100.00 | 0.01      | 0.05             |
| Maximum time, s      | Tmax        | 0.05-100.00 | 0.01      | 10.00            |
| Pickup current, A    | lp          | 10-6000     | 1         | 100              |
| Time adder, s        | Та          | 0.00-2.00   | 0.01      | 0.00             |

## Phase and Earth Overcurrent Reclosing (AR OC)

The AR OC element provides reclosing initiated by tripping of one of OC1, OC2, OC3, EF1, EF2 or EF3 elements. The user set delay between trip and reclose is called "reclose time" (Tr) and can be set independently for each trip in the sequence. If the fault is not cleared during "reclose time", the recloser will trip again. This will repeat a number of times until the fault is cleared or the AR OC element reaches the end of the user defined reclose sequence. At this point the recloser remains open and will no longer reclose automatically. This is known as "lockout" and the recloser can only be closed by local or remote operator command, which clears the lockout condition.

AR OC settings are described in Tables 21, 22.

| Table 21 - | <b>Radial line</b> | recloser / | AR OC | element | settings |
|------------|--------------------|------------|-------|---------|----------|
|------------|--------------------|------------|-------|---------|----------|

| Setting                    | Designation |                   | Default |     |
|----------------------------|-------------|-------------------|---------|-----|
| Operating mode             | Mode        | Normal/Rezip/ZSC  |         | ZSC |
| Number of trips to lockout | Nt          | Mode = Normal/ZSC | 1/2/3/4 | 4   |
|                            |             | Mode = Rezip      | 2/3/4   | 2   |
| Highset trips to lockout   | Nhs         | 1/2/3/4           |         | 1   |

| Reclosing sequence     | Seq      | Mode = Normal/ZSC | For 4 trips to lockout:<br>IIII/IIID/IDD/DDD/DDD/DDI/DDI/<br>DIII/ IID/IDI/IDDI<br>For 3 trips to lockout:<br>III/IID/IDD/DD/DDI/DI/IDI<br>For 2 trips to lockout:<br>II/ID/DD/DI<br>For 1 trip to lockout:<br>I/D | IIDD                                                                                      |
|------------------------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                        |          | Mode = Rezip n.a. |                                                                                                                                                                                                                    | For 4 trips to lockout: DIII<br>For 3 trips to lockout: DII<br>For 2 trips to lockout: DI |
| First closure mode     | SST mode | Mode = Normal/ZSC | Accelerate, Decelerate, Normal                                                                                                                                                                                     | Normal                                                                                    |
| First closure mode     |          | Mode = Rezip      | n.a.                                                                                                                                                                                                               | Accelerate                                                                                |
| First radiase time is  | Tr1      | Mode = Normal/ZSC | 0.10-1800.00                                                                                                                                                                                                       | 1.00                                                                                      |
| First reclose time, s  |          | Mode = Rezip      | 0.20-1800.00                                                                                                                                                                                                       | 0.20                                                                                      |
| Second reclose time, s | Tr2      | 1.00-1800.00      |                                                                                                                                                                                                                    | 10.00                                                                                     |
| Third reclose time, s  | Tr3      | 1.00-1800.00      |                                                                                                                                                                                                                    | 30.00                                                                                     |
| Reset time, s          | Tres     | Mode = Normal/ZSC | 1-180                                                                                                                                                                                                              | 1                                                                                         |
|                        |          | Mode = Rezip      | n.a.                                                                                                                                                                                                               | 0.10                                                                                      |

Table 22 - Ring line recloser AR OC element settings

| Setting                     | Designation |                   | Default                                                                                                                                                                                                                |                                                                                           |
|-----------------------------|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Operating mode              | Mode        | N                 | ZSC                                                                                                                                                                                                                    |                                                                                           |
|                             |             | Mode = Normal/ZSC | 1/2/3/4                                                                                                                                                                                                                | 4                                                                                         |
| Number of trips to lockout+ | Nt+         | Mode = Rezip      | 2/3/4                                                                                                                                                                                                                  | 2                                                                                         |
| Highset trips to lockout+   | Nhs+        |                   | 1/2/3/4                                                                                                                                                                                                                | 1                                                                                         |
| Reclosing sequence+         | Seq+        | Mode = Normal/ZSC | For 4 trips to lockout:<br>IIII/IIID/IDD/DDD/DDD/DDI/DDI/<br>DIII/ IIDI/IDI/IDDI<br>For 3 trips to lockout:<br>III/IID/IDD/DD/DD/DI/III/IDI<br>For 2 trips to lockout:<br>II/ID/DD/DI<br>For 1 trip to lockout:<br>I/D | IIDD                                                                                      |
|                             |             | Mode = Rezip      | n.a.                                                                                                                                                                                                                   | For 4 trips to lockout: DIII<br>For 3 trips to lockout: DII<br>For 2 trips to lockout: DI |
| First closure mode+         | SST mode+   | Mode = Normal/ZSC | Accelerate, Decelerate, Normal                                                                                                                                                                                         | Normal                                                                                    |
|                             |             | Mode = Rezip      | n.a.                                                                                                                                                                                                                   | Accelerate                                                                                |
| First reclose time+, s      | Tr1+        | Mode = Normal/ZSC | 0.10-1800.00                                                                                                                                                                                                           | 1.00                                                                                      |
| Thist reclose time+, s      |             | Mode = Rezip      | 0.20-1800.00                                                                                                                                                                                                           | 0.20                                                                                      |
| Second reclose time+, s     | Tr2+        | 1.00-1800.00      |                                                                                                                                                                                                                        | 10.00                                                                                     |
| Third reclose time+, s      | Tr3+        |                   | 30.00                                                                                                                                                                                                                  |                                                                                           |
| Reset time+, s              | Trock       | Mode = Normal/ZSC | 1-180                                                                                                                                                                                                                  | 1                                                                                         |
| Neser unne+, s              | Tres+       | Mode = Rezip      | n.a.                                                                                                                                                                                                                   | 0.10                                                                                      |

| Number of trins to lockout  | Nt-                   | Mode = Normal/ZSC | 1/2/3/4                                                                                                                                                                                                             | 4                                                                                         |
|-----------------------------|-----------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Number of trips to lockout- | INT-                  | Mode = Rezip      | 2/3/4                                                                                                                                                                                                               | 2                                                                                         |
| Highset trips to lockout-   | Nhs-                  |                   | 1/2/3/4                                                                                                                                                                                                             | 1                                                                                         |
| Reclosing sequence-         | losing sequence- Seq- |                   | For 4 trips to lockout:<br>IIII/IIID/IDD/DDD/DDD/DDI/DDI/<br>DIII/ IIDI/IDI/IDDI<br>For 3 trips to lockout:<br>III/IID/IDD/DD/DDI/DI/IDI<br>For 2 trips to lockout:<br>II/ID/DD/DI<br>For 1 trip to lockout:<br>I/D | lidd                                                                                      |
|                             |                       | Mode = Rezip      | n.a.                                                                                                                                                                                                                | For 4 trips to lockout: DIII<br>For 3 trips to lockout: DII<br>For 2 trips to lockout: DI |
| First closure mode-         | SST mode-             | Mode = Normal/ZSC | Accelerate, Decelerate, Normal                                                                                                                                                                                      | Normal                                                                                    |
|                             | SST mode              | Mode = Rezip      | n.a.                                                                                                                                                                                                                | Accelerate                                                                                |
| First reclose time-, s      | Tr1-                  | Mode = Normal/ZSC | 0.10-1800.00                                                                                                                                                                                                        | 1.00                                                                                      |
| First reclose time-, s      |                       | Mode = Rezip      | 0.20-1800.00                                                                                                                                                                                                        | 0.20                                                                                      |
| Second reclose time-, s     | Tr2-                  |                   | 1.00-1800.00                                                                                                                                                                                                        |                                                                                           |
| Third reclose time-, s      | Tr3-                  |                   | 1.00-1800.00                                                                                                                                                                                                        | 30.00                                                                                     |
| Reset time-, s              | Tres-                 | Mode = Normal/ZSC | 1-180                                                                                                                                                                                                               | 1                                                                                         |
|                             |                       | Mode = Rezip      | n.a.                                                                                                                                                                                                                | 0.10                                                                                      |

Single shot to lockout algorithm is supported by the AR OC element. This function allows to trip to lockout (without autoreclosing) if a fault has been detected during reset time after operator closing into a fault.

### Loss of Supply (LS)

This element trips recloser if the source is lost (no HV voltage is present).

LS settings are described in Table 23.

|                  |             |                | Table 23 - LS elem | nent settings |
|------------------|-------------|----------------|--------------------|---------------|
| Setting          | Designation | Range          | Resolution         | Default       |
| Operating mode   | Mode        | Enable/Disable | n.a.               | Disable       |
| Tripping time, s | Tt          | 0.10 - 100.00  | 0.01               | 10.00         |

### Loss of supply autoreclosing (ARLS)

The ARLS element provides reclosing initiated by the LS element tripping.

The delay between power supply restoration and reclose is called "reclose time" (Tr). Tr time setting is configured by the user. If loss of supply occurs again prior to reset time expiration, the recloser will trip again and will not reclose automatically. This is known as "lockout" and the recloser can only be closed by local or remote operator command, which clears the lockout condition.

ARLS settings are described in Table 24.

#### Table 24 - ARLS element settings

|                                          |             |               |               | _     |  |
|------------------------------------------|-------------|---------------|---------------|-------|--|
| Setting                                  | Designation | Ra            | Range         |       |  |
| Operating mode                           | Mode        | Norma         | Normal        |       |  |
| N                                        | NI          | Mode = Normal | 1/2           | 1     |  |
| Number of trips to lockout <sup>1)</sup> | Nt          | Mode = Rezip  | NA            | 2     |  |
| Declara time a                           | Tr          | Mode = Normal | 0.10 - 180.00 | 10.00 |  |
| Reclose time, s                          | Tr          | Mode = Rezip  | 0.20 - 180.00 | 0.20  |  |

Note:

<sup>1)</sup>In Rezip mode this setting has a fixed value and is unavailable (hidden)

#### REZIP

Rezip is the automation algorithm that enables complex distribution network automation. Rezip can be used in networks where the recloser application is not possible due to protection coordination restrictions. The algorithm is initiated by an upstream recloser trip. Once the loss of supply is detected, all Rezip reclosers will trip during recloser dead-time. When the recloser closes, it restores supply to the closest Rezip recloser(s). It activates the ARLS timer and after a preset time Rezip reclosers will close restoring the power supply to downstream Rezip recloser(s). Immediately after closure Rezip the recloser(s) are operating in Instantaneous protection mode and if any of them detects the fault, it will trip before the upstream protection device will. By the time next Rezip recloser is closer by the ARLS, the upstream Rezip OC/EF protection is disabled, so no grading between Rezip reclosers is needed.

The algorythm provides the set-up simplicity of a traditional sectionalizer and at the same time reducing the fault clearing time and network reconfiguration time application in far more complex networks and provide an unlimited number of sections to limit the number of customers affected.

Rezip is applicable in meshed grid automation schemes together with ABR functionality. Rezip enables the building of self-healing networks where it is not possible with conventional reclosers and sectionalizers.

## Zone Sequence Coordination

The AR OC provides Zone Sequence Coordination (ZSC). ZSC forces the AR OC element to step to the next count in the reclose sequence on reset of all protection elements if it detects a downstream protection device has operated. This functionality is required for applications where a fuse-saving philosophy is used.

#### Hot Line (HL)

This element consists of two sub-elements which provide protection against short circuit faults during Hot Line maintenance. It generally has more sensitive settings than corresponding OCR settings and it has no reclosing functions.

HL consists of two Overcurrent elements, one for Phase Overcurrent (HLOC) and one for Earth Fault (HLEF). Operation of either element results in the trip to lockout.

HL settings are described in Tables 25-28.

|                   | ·           | lable 25 - Radial line recloser HLOC element settings |            |         |  |  |
|-------------------|-------------|-------------------------------------------------------|------------|---------|--|--|
| Setting           | Designation | Range                                                 | Resolution | Default |  |  |
| Pickup current, A | lp          | 10-1280                                               | 1          | 10      |  |  |
| Tripping time, s  | Tt          | 0.00-2.00                                             | 0.01       | 0.00    |  |  |

| Table 26 - Ring line re | closer HLOC element settings |
|-------------------------|------------------------------|
|-------------------------|------------------------------|

|                     |             |           |            | 3         |
|---------------------|-------------|-----------|------------|-----------|
| Setting             | Designation | Range     | Resolution | Default`` |
| Pickup current +, A | lp +        | 10-1280   | 1          | 10        |
| Tripping time +, s  | Tt +        | 0.00-2.00 | 0.01       | 0.00      |
| Pickup current -, A | lp -        | 10-1280   | 1          | 10        |
| Tripping time -, s  | Tt -        | 0.00-2.00 | 0.01       | 0.00      |

#### Table 27 - Radial line recloser HLEF element settings

| Setting           | Designation | Range     | Resolution | Default |
|-------------------|-------------|-----------|------------|---------|
| Pickup current, A | lp          | 4-1280    | 1          | 4       |
| Tripping time, s  | Tt          | 0.00-2.00 | 0.01       | 0.00    |

Table 28 - Ring line recloser HLEF element settings

| Setting             | Designation | Range     | Resolution | Default |
|---------------------|-------------|-----------|------------|---------|
| Pickup current +, A | lp +        | 4-1280    | 1          | 4       |
| Tripping time +, s  | Tt +        | 0.00-2.00 | 0.01       | 0.00    |
| Pickup current -, A | lp -        | 4-1280    | 1          | 4       |
| Tripping time -, s  | Tt -        | 0.00-2.00 | 0.01       | 0.00    |

# Sensitive Earth Fault (SEF)

This element provides protection against high impedance earth faults.

SEF settings are described in Tables 29, 30.

| Table 29 - | Radial li | ne recloser | SEF ele | ment settings |
|------------|-----------|-------------|---------|---------------|
|------------|-----------|-------------|---------|---------------|

| Setting           | Designation | Range              | Resolution | Default |
|-------------------|-------------|--------------------|------------|---------|
| Operating mode    | Mode        | Enable/Disable     | n.a.       | Enable  |
| Pickup current, A | lp          | 1-80 <sup>1)</sup> | 1          | 4       |
| Tripping time, s  | Tt          | 0.10-100.00        | 0.01       | 10.00   |

Note:

<sup>1)</sup>Note that overcurrent protection pickup setting value shall not exceed SEF pickup setting value times 300.

|                     | Table 30 - Ring line recloser SEF element se |                |            |         |  |
|---------------------|----------------------------------------------|----------------|------------|---------|--|
| Setting             | Designation                                  | Range          | Resolution | Default |  |
| Operating mode +    | Mode +                                       | Enable/Disable | n.a.       | Enable  |  |
| Pickup current +, A | lp +                                         | 1-80           | 1          | 4       |  |
| Tripping time +, s  | Tt +                                         | 0.10-100.00    | 0.01       | 10.00   |  |
| Operating mode -    | Mode -                                       | Enable/Disable | n.a.       | Enable  |  |
| Pickup current -, A | lp -                                         | 1-80           | 1          | 4       |  |
| Tripping time -, s  | Tt -                                         | 0.10-100.00    | 0.01       | 10.00   |  |

## Sensitive Earth Fault Reclosing (AR SEF)

This element provides reclosing initiated by the SEF element operation. It also supports single shot to lockout functionality.

AR SEF settings are described in Tables 31, 32.

|                            | lable 31 - Kadiai line recloser AK SEF element |             |            |         |
|----------------------------|------------------------------------------------|-------------|------------|---------|
| Setting                    | Designation                                    | Range       | Resolution | Default |
| Number of trips to lockout | Nt                                             | 1/2/3/4     | n.a.       | 3       |
| First reclose time, s      | Tr 1                                           | 0.10-180.00 | 0.01       | 1.00    |
| Second reclose time, s     | Tr2                                            | 1.00-180.00 | 0.01       | 10.00   |
| Third reclose time, s      | Tr3                                            | 1.00-180.00 | 0.01       | 30.00   |
| Reset time, s              | Tres                                           | 1-180       | 1          | 1       |

Table 31 - Radial line recloser AR SEF element

#### Table 32 - Ring line recloser AR SEF element settings

| Setting                      | Designation | Range       | Resolution | Default |
|------------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout + | Nt +        | 1/2/3/4     | n.a.       | 3       |
| First reclose time +, s      | Tr1 +       | 0.10-180.00 | 0.01       | 1.00    |
| Second reclose time +, s     | Tr2 +       | 1.00-180.00 | 0.01       | 10.00   |
| Third reclose time +, s      | Tr3 +       | 1.00-180.00 | 0.01       | 30.00   |
| Reset time +, s              | Tres +      | 1-180       | 1          | 1       |
| Number of trips to lockout - | Nt -        | 1/2/3/4     | n.a.       | 3       |
| First reclose time -, s      | Tr1 -       | 0.10-180.00 | 0.01       | 1.00    |
| Second reclose time -, s     | Tr2 -       | 1.00-180.00 | 0.01       | 10.00   |
| Third reclose time -, s      | Tr3 -       | 1.00-180.00 | 0.01       | 30.00   |
| Reset time -, s              | Tres -      | 1-180 s     | 1s         | 1s      |

### Voltage Unbalance (VU)

This element provides sensitive load protection and detects an upstream broken conductor condition.

VU settings are described in Tables 33, 34.

| Setting           | Designation | Range          | Resolution | Default |
|-------------------|-------------|----------------|------------|---------|
| Operating mode    | Mode        | Enable/Disable | n.a.       | Disable |
| Voltage unbalance | Uu          | 0.05-1.00      | 0.01       | 0.10    |
| Tripping time, s  | Tt          | 0.10-100.00    | 0.01       | 10.00   |

Table 33 - Radial line recloser VU element settings

| Setting             | Designation | Range          | Resolution | Default |
|---------------------|-------------|----------------|------------|---------|
| Operating mode +    | Mode +      | Enable/Disable | n.a.       | Disable |
| Voltage unbalance + | Uu +        | 0.05-1.00      | 0.01       | 0.10    |
| Tripping time +, s  | Tt +        | 0.10-100.00    | 0.01 s     | 10.00   |
| Operating mode -    | Mode -      | Enable/Disable | n.a.       | Disable |
| Voltage unbalance - | Uu -        | 0.05-1.00      | 0.01       | 0.10    |
| Tripping time -, s  | Tt -        | 0.10-100.00    | 0.01 s     | 10.00   |

#### Table 34 - Ring line recloser VU element settings

## **Current Unbalance (CU)**

Tripping time, s

This element provides three phase load protection and detects a downstream broken conductor condition. CU settings are described in Tables 35, 36.

|                   |             | Table 35 -     | Radial line recloser | CU element set |
|-------------------|-------------|----------------|----------------------|----------------|
| Setting           | Designation | Range          | Resolution           | Default        |
| Operating mode    | Mode        | Enable/Disable | n.a.                 | Disable        |
| Current unbalance | lu          | 0.05-1.00      | 0.01                 | 0.20           |
|                   |             |                |                      |                |

Τt

#### ent settings

0.01

#### Table 36 - Ring line recloser CU element

10.00

| Setting             | Designation | Range          | Resolution | Default |
|---------------------|-------------|----------------|------------|---------|
| Operating mode +    | Mode +      | Enable/Disable | n.a.       | Disable |
| Current unbalance + | lu +        | 0.05-1.00      | 0.01       | 0.20    |
| Tripping time +, s  | Tt +        | 0.10-300.00    | 0.01       | 10.00   |
| Operating mode -    | Mode -      | Enable/Disable | n.a.       | Disable |
| Current unbalance - | lu -        | 0.05-1.00      | 0.01       | 0.20    |
| Tripping time -, s  | Tt -        | 0.10-300.00    | 0.01       | 10.00   |

0.10-300.00

# Voltage Reclosing Control (VRC)

This element monitors the quality of the high voltage power supply. It blocks reclosing initiated by any AR element when voltage and/or frequency do not meet user set values.

VRC settings are described in Tables 37, 38.

| Table 57 - Radial life feetoset with element setting |                  |                                                                |                                                |  |
|------------------------------------------------------|------------------|----------------------------------------------------------------|------------------------------------------------|--|
| Setting                                              | Designation      | Range                                                          | Default                                        |  |
| Voltage unbalance mode                               | VU control mode  | Enable/Disable                                                 | Enable                                         |  |
| Neutral voltage shift mode                           | NVS control mode | Enable/Disable                                                 | Enable                                         |  |
| Over voltage mode                                    | OV control mode  | Enable/Disable                                                 | Enable                                         |  |
| Under voltage mode                                   | UV control mode  | Enable/Disable                                                 | Enable                                         |  |
| Under frequency mode                                 | UF control mode  | Enable/Disable                                                 | Enable                                         |  |
| Voltage unbalance                                    | VUp              | 0.05-1.00                                                      | 0.20                                           |  |
| Neutral voltage shift<br>(zero sequence voltage)     | NVSp             | 0.05-1.00                                                      | 0.40                                           |  |
| Pickup overvoltage multiplier                        | OVp              | 1.00-1.30                                                      | 1.20                                           |  |
| Pickup undervoltage multiplier                       | UVp              | 0.60-1.00                                                      | 0.80                                           |  |
| Pickup underfrequency, Hz                            | UFp              | 45.00 - 49.99 for Frated=50Hz<br>55.00 - 59.99 for Frated=60Hz | 49.50 for Frated=50Hz<br>59.50 for Frated=60Hz |  |

#### Table 37 - Radial line recloser VRC element settings

Table 38 - Ring line recloser VRC element settings

| Setting                                           | Designation      | Range                                                          | Default                                        |
|---------------------------------------------------|------------------|----------------------------------------------------------------|------------------------------------------------|
| Setting                                           | Designation      | Kange                                                          | Deladit                                        |
| Voltage unbalance mode                            | VU control mode  | Enable/Disable                                                 | Enable                                         |
| Neutral voltage shift mode                        | NVS control mode | Enable/Disable                                                 | Enable                                         |
| Over voltage mode                                 | OV control mode  | Enable/Disable                                                 | Enable                                         |
| Under voltage mode                                | UV control mode  | Enable/Disable                                                 | Enable                                         |
| Under frequency mode                              | UF control mode  | Enable/Disable                                                 | Enable                                         |
| Voltage unbalance+                                | VUp+             | 0.05-1.00                                                      | 0.20                                           |
| Neutral voltage shift+<br>(zero sequence voltage) | NVSp+            | 0.05-1.00                                                      | 0.40                                           |
| Pickup overvoltage multiplier+                    | OVp+             | 1.00-1.30                                                      | 1.20                                           |
| Pickup undervoltage multiplier+                   | UVp+             | 0.60-1.00                                                      | 0.80                                           |
| Pickup underfrequency+, Hz                        | UFp+             | 45.00 - 49.99 for Frated=50Hz<br>55.00 - 59.99 for Frated=60Hz | 49.50 for Frated=50Hz 59.50<br>for Frated=60Hz |
| Voltage unbalance-                                | VUp-             | 0.05-1.00                                                      | 0.20                                           |
| Neutral voltage shift-<br>(zero sequence voltage) | NVSp-            | 0.05-1.00                                                      | 0.40                                           |
| Pickup overvoltage multiplier-                    | OVp-             | 1.00-1.30                                                      | 1.20                                           |
| Pickup undervoltage multiplier-                   | UVp-             | 0.60-1.00                                                      | 0.80                                           |
| Pickup underfrequency-, Hz                        | UFp-             | 45.00 - 49.99 for Frated=50Hz<br>55.00 - 59.99 for Frated=60Hz | 49.50 for Frated=50Hz 59.50<br>for Frated=60Hz |

# Undervoltage (UV)

This element provides a trip command when the voltage falls below a set value.

UV settings are described in Tables 39, 40.

| Setting                   | Designation | Range          | Resolution | Default |
|---------------------------|-------------|----------------|------------|---------|
| Operating mode            | Mode        | Enable/Disable | n.a.       | Disable |
| Pickup voltage multiplier | Up          | 0.60-1.00      | 0.01       | 0.80    |
| Tripping time, s          | Tt          | 0.10-100.00    | 0.01       | 10.00   |

#### Table 39 - Radial line recloser UV element settings

#### Table 40 - Ring line recloser UV element settings

|                             |             | 5              |            |         |
|-----------------------------|-------------|----------------|------------|---------|
| Setting                     | Designation | Range          | Resolution | Default |
| Operating mode +            | Mode +      | Enable/Disable | n.a.       | Disable |
| Pickup voltage multiplier + | Up +        | 0.60-1.00      | 0.01       | 0.80    |
| Tripping time +, s          | Tt +        | 0.10-100.00    | 0.01       | 10.00   |
| Operating mode -            | Mode -      | Enable/Disable | n.a.       | Disable |
| Pickup voltage multiplier - | Up -        | 0.60-1.00      | 0.01       | 0.80    |
| Tripping time -, s          | Tt -        | 0.10-100.00    | 0.01       | 10.00   |

## **Undervoltage Reclosing (AR UV)**

This element provides reclosing initiated by the UV element operation..

AR UV settings are described in Tables 41, 42.

#### Table 41 - Radial line recloser AR UV element settings

| Setting                    | Designation | Range       | Resolution | Default |
|----------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout | Nt          | 1/2         | n.a.       | 1       |
| Reclose time, s            | Tr          | 0.10-180.00 | 0.01       | 10.00   |

#### Table 42 - Ring line recloser AR UV element settings

| Setting                      | Designation | Range       | Resolution | Default |
|------------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout + | Nt +        | 1/2         | n.a.       | 1       |
| Reclose time +, s            | Tr +        | 0.10-180.00 | 0.01       | 10.00   |
| Number of trips to lockout - | Nt -        | 1/2         | n.a.       | 1       |
| Reclose time -, s            | Tr -        | 0.10-180.00 | 0.01       | 10.00   |

# **Overvoltage (OV)**

This element provides load protection and detects high source voltage.

OV settings are described in Tables 43, 44.

|                           | Table 45 - Radial line recloser OV element settings |                |            |         |  |
|---------------------------|-----------------------------------------------------|----------------|------------|---------|--|
| Setting                   | Designation                                         | Range          | Resolution | Default |  |
| Operating mode            | Mode                                                | Enable/Disable | n.a.       | Disable |  |
| Pickup voltage multiplier | Up                                                  | 1.00-1.40      | 0.01       | 1.05    |  |
| Tripping time, s          | Tt                                                  | 0.10-100.00    | 0.01       | 10.00   |  |

#### Table 43 - Radial line recloser OV element settings

#### Table 44 - Ring line recloser OV element settings

| Setting                    | Designation | Range          | Resolution | Default |
|----------------------------|-------------|----------------|------------|---------|
| Operating mode+            | Mode+       | Enable/Disable | n.a.       | Disable |
| Pickup voltage multiplier+ | Up+         | 1.00-1.40      | 0.01       | 1.05    |
| Tripping time+, s          | Tt+         | 0.10-100.00    | 0.01       | 10.00   |
| Operating mode-            | Mode-       | Enable/Disable | n.a.       | Disable |
| Pickup voltage multiplier- | Up-         | 1.00-1.40      | 0.01       | 1.05    |
| Tripping time-, s          | Tt-         | 0.10-100.00    | 0.01       | 10.00   |

# **Overvoltage reclosing (AR OV)**

This element provides reclosing initiated by the OV element operation.

AR OV settings are described in Tables 45, 46.

#### Table 45 - Radial line recloser AR OV element settings

| Setting                    | Designation | Range       | Resolution | Default |
|----------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout | Nt          | 1/ 2        | n.a.       | 1       |
| Reclose time, s            | Tr          | 0.10-300.00 | 0.01       | 10.00   |

#### Table 46 - Ring line recloser AR OV element settings

| Setting                     | Designation | Range       | Resolution | Default |
|-----------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout+ | Nt+         | 1/ 2        | n.a.       | 1       |
| Reclose time+, s            | Tr+         | 0.10-300.00 | 0.01       | 10.00   |
| Number of trips to lockout- | Nt-         | 1/ 2        | n.a.       | 1       |
| Reclose time-, s            | Tr-         | 0.10-300.00 | 0.01       | 10.00   |

# **Underfrequency (UF)**

This element provides load protection and detects low system frequency.

UF settings are described in Tables 47, 48.

#### Table 47 - Radial line recloser UF element settings

| Setting              | Designation | Range                                                                                | Resolution | Default        |
|----------------------|-------------|--------------------------------------------------------------------------------------|------------|----------------|
| Operating mode       | Mode        | Enable/Disable                                                                       | n.a.       | Disable        |
| Pickup frequency, Hz | Fp          | 45.00-50.00 Hz for rated frequency=50 Hz<br>55.00-60.00 Hz for rated frequency=60 Hz | 0.01       | 45.00<br>55.00 |
| Tripping time, s     | Tt          | 0.10-180.00                                                                          | 0.01       | 0.10           |

#### Table 48 - Ring line recloser UF element settings

| Setting                | Designation | Range                                                                                | Resolution | Default        |
|------------------------|-------------|--------------------------------------------------------------------------------------|------------|----------------|
| Operating mode +       | Mode +      | Enable/Disable                                                                       | n.a.       | Disable        |
| Pickup frequency +, Hz | Fp +        | 45.00-50.00 Hz for rated frequency=50 Hz<br>55.00-60.00 Hz for rated frequency=60 Hz | 0.01       | 45.00<br>55.00 |
| Tripping time +, s     | Tt +        | 0.10-180.00                                                                          | 0.01       | 0.10           |
| Operating mode -       | Mode -      | Enable/Disable                                                                       | n.a.       | Disable        |
| Pickup frequency -, Hz | Fp -        | 45.00-50.00 Hz for rated frequency=50 Hz<br>55.00-60.00 Hz for rated frequency=60 Hz | 0.01       | 45.00<br>55.00 |
| Tripping time -, s     | Tt -        | 0.10-180.00                                                                          | 0.01       | 0.10           |

# **Underfrequency Reclosing (AR UF)**

This element provides reclosing initiated by the UF element operation.

AR UF settings are described in Tables 49, 50.

#### Table 49 - Radial line recloser AR UF element settings

| Setting                    | Designation | Range       | Resolution | Default |
|----------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout | Nt          | 1/2         | n.a.       | 1       |
| Reclose time, s            | Tr          | 0.10-180.00 | 0.01       | 10.00   |

#### Table 50 - Ring line recloser AR UF element settings

| Setting                      | Designation | Range       | Resolution | Default |
|------------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout + | Nt +        | 1/2         | n.a.       | 1       |
| Reclose time +, s            | Tr +        | 0.10-180.00 | 0.01       | 10.00   |
| Number of trips to lockout - | Nt -        | 1/2         | n.a.       | 1       |
| Reclose time -, s            | Tr -        | 0.10-180.00 | 0.01       | 10.00   |

#### Table 51 - Radial line recloser OF element settings

| Setting              | Designation | Range                                                                          | Resolution | Default        |
|----------------------|-------------|--------------------------------------------------------------------------------|------------|----------------|
| Operating mode       | Mode        | Enable/Disable                                                                 | n.a.       | Disable        |
| Pickup frequency, Hz | Fp          | 50.00-55.00 for rated frequency=50 Hz<br>60.00-65.00 for rated frequency=60 Hz | 0.01       | 55.00<br>65.00 |
| Tripping time, s     | Tt          | 0.10-180.00                                                                    | 0.01       | 1.00           |

|                        |             |                                                                              |            | 5              |
|------------------------|-------------|------------------------------------------------------------------------------|------------|----------------|
| Setting                | Designation | Range                                                                        | Resolution | Default        |
| Operating mode +       | Mode +      | Enable/Disable                                                               | n.a.       | Disable        |
| Pickup frequency +, Hz | Fp +        | 50.00-55.00 for rated frequency=50Hz<br>60.00-65.00 for rated frequency=60Hz | 0.01       | 55.00<br>65.00 |
| Tripping time +, s     | Tt +        | 0.10-180.00 s                                                                | 0.01 s     | 1.00 s         |
| Operating mode -       | Mode -      | Enable/Disable                                                               | n.a.       | Disable        |
| Pickup frequency -, Hz | Fp -        | 50.00-55.00 for rated frequency=50Hz<br>60.00-65.00 for rated frequency=60Hz | 0.01       | 55.00<br>65.00 |
| Tripping time -, s     | Tt -        | 0.10-180.00                                                                  | 0.01       | 1.00           |

#### Table 52 - Ring line recloser OF element settings

## **Overfrequency Reclosing (AR OF)**

This element provides reclosing initiated by the OF element operation.

AR OF settings are described in Tables 53, 54.

#### Table 53 - Radial line recloser AR OF element settings

| Setting                    | Designation | Range       | Resolution | Default |
|----------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout | Nt          | 1/2         | n.a.       | 1       |
| Reclose time, s            | Tr          | 0.10-180.00 | 0.01       | 10.00   |

#### Table 54 - Ring line recloser AR OF element settings

| Setting                      | Designation | Range       | Resolution | Default |
|------------------------------|-------------|-------------|------------|---------|
| Number of trips to lockout + | Nt +        | 1/2         | n.a.       | 1       |
| Reclose time +, s            | Tr +        | 0.10-180.00 | 0.01       | 10.00   |
| Number of trips to lockout - | Nt -        | 1/2         | n.a.       | 1       |
| Reclose time -, s            | Tr -        | 0.10-180.00 | 0.01       | 10.00   |

## Automatic Backfeed Restoration (ABR)

Automatic Backfeed Restoration is used to automatically close a normally open recloser if it detects a source (via the SD element) on the either side of the recloser and absence of a sourse on the other side.

This element is only applicable for ring line type reclosers.

ABR element settings are described in Table 55.

|                       |             |                          | Table 55 - Ac | sk element settings |
|-----------------------|-------------|--------------------------|---------------|---------------------|
| Setting               | Designation | Range                    | Resolution    | Default             |
| Operating mode        | Mode        | Disable/Both/Only+/Only- | n.a.          | Disable             |
| Restoration time +, s | Tr +        | 0.10-180.00              | 0.01          | 60.00               |
| Restoration time -, s | Tr -        | 0.10-180.00              | 0.01          | 60.00               |

#### Table 55 - ABR element settings

# 6.2 Measurement

## 6.2.1 Overview

The Main Processor gets the analog signals from the OSM current and voltage sensors, converts them into digital format, and filters it for Harmonic content. The RMS values of the filtered signals are used for protection and indication as shown in the table below.

| Parameter                                                 | Designation      | Range     | Resolu-<br>tion | Applicability |              |
|-----------------------------------------------------------|------------------|-----------|-----------------|---------------|--------------|
| i urumeter                                                |                  |           |                 | Protection    | Indication   |
| Phase currents, A                                         | la, lb, lc       | 07000     | 1A              | $\checkmark$  | $\checkmark$ |
| Residual current1), A                                     | In               | 07000     | 1A              | $\checkmark$  | $\checkmark$ |
| Positive sequence current, A                              | 11               | 07000     | 1A              | $\checkmark$  | $\checkmark$ |
| Negative sequence current, A                              | 12               | 07000     | 1A              | $\checkmark$  | $\checkmark$ |
| Positive sequence voltage measured from Source + side, kV | U1+              | 018       | 0.1kV           | $\checkmark$  | $\checkmark$ |
| Positive sequence voltage measured from Source - side, kV | U1-              | 018       | 0.1kV           | $\checkmark$  | $\checkmark$ |
| Negative sequence voltage measured from Source + side, kV | U2+              | 018       | 0.1kV           | $\checkmark$  | $\checkmark$ |
| Negative sequence voltage measured from Source - side, kV | U2-              | 018       | 0.1kV           | $\checkmark$  | $\checkmark$ |
| Frequency measured from Source + side2), Hz               | F+               | 4065      | 0.01Hz          | $\checkmark$  | $\checkmark$ |
| Frequency measured from Source - side2), Hz               | F-               | 4065      | 0.01Hz          | $\checkmark$  | $\checkmark$ |
| Single-phase power factor                                 | PFa, PFb, PFc    | 00.01     | 0.01            |               | $\checkmark$ |
| Three-phase power factor                                  | PF3ph            | 00.01     | 0.01            |               | $\checkmark$ |
| Phase-to-earth voltages measured from Source + side, kV   | Ua+, Ub+, Uc+    | 018       | 0.1kV           |               | $\checkmark$ |
| Phase-to-earth voltages measured from Source - side, kV   | Ua-, Ub-, Uc-    | 018       | 0.1kV           |               | $\checkmark$ |
| Phase-to-phase voltages measured from Source + side, kV   | Uab+, Ubc+, Uac+ | 030       | 0.1kV           |               | $\checkmark$ |
| Phase-to-phase voltages measured from Source - side, kV   | Uab-, Ubc-, Uac- | 030       | 0.1kV           |               | $\checkmark$ |
| Positive sequence active power, kW                        | P1               | 065535    | 1kW             |               | $\checkmark$ |
| Single-phase active power, kW                             | Pa, Pb, Pc       | 065535    | 1kW             |               | $\checkmark$ |
| Three-phase active power, kW                              | P3ph             | 065535    | 1kW             |               | $\checkmark$ |
| Single-phase reactive power, kVAr                         | Qa, Qb, Qc       | 065535    | 1kVAr           |               | $\checkmark$ |
| Three-phase reactive power, kVAr                          | Q3ph             | 065535    | 1kVAr           |               | $\checkmark$ |
| Single-phase active energy, kWh                           | Wa, Wb, Wc       | 099999999 | 1kWh            |               | $\checkmark$ |
| Three-phase active energy, kWh                            | W3ph             | 099999999 | 1kWh            |               | $\checkmark$ |
| Single-phase reactive energy, kVArh                       | Ea, Eb, Ec       | 099999999 | 1kVArh          |               | $\checkmark$ |
| Three-phase reactive energy, kVArh                        | E3ph             | 099999999 | 1kVArh          |               | $\checkmark$ |

Table 56 - Applicability of RMS values of the signals

Note:

<sup>1)</sup>Residual current In is equal to three times the zero sequence current Io

<sup>2)</sup> Voltage and frequency memory is used if all three phase to earth voltages on any side drop below approximately 0.5 kV.

Signal filtering effectively rejects higher harmonics. Phase current measuring channels are additionally equipped with inrush filters.

## 6.2.2 Inrush filter

Reclosers described in the current product guide incorporate a unique inrush filter. This allows filtering of magnetizing currents occurring at energizing transformers or distribution feeders with step-down-transformers.

In contrast to the widely used inrush restraint, which blocks the operation of protection for the period of inrush, the filter leaves all protection active and sensitive to faults for the whole period of line energizing.

The advantages are:

- This feature makes it possible to select the settings of current-based protection elements based on actual load and fault levels, not considering any side effects due to transformer load energizing;
- If, after maintenance closing or performing backfeed restoration for a faulty feeder part, the fault clearing time is significantly reduced as all protection elements operate correctly without any delays.

Figures 30 and 31 demonstrate the comparison of current measurement results at load energizing captured by the recloser without and with inrush filter enabled.

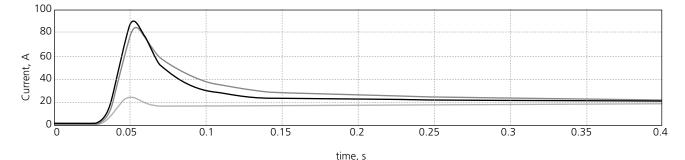



Figure 28 Basic frequency phase currents RMS. No inrush filter applied

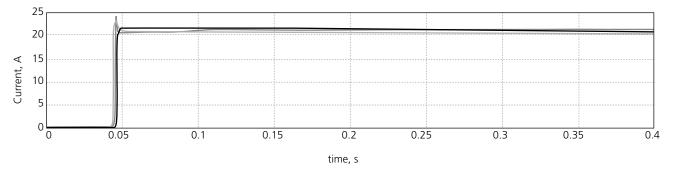



Figure 29 Basic frequency phase currents RMS. Tavrida Electric inrush filter applied

# 6.3 Communication

## 6.3.1 Overview

Indication and control are provided through the following interfaces:

- Personal Computer Interface (PCI)
- Telecommunication Interface (TCI)
- Digital Input/Output Interface (IOI)
- TELARM dispatcher Interface (TDI)

In the "Local" mode, the recloser is controlled via the MMI or the Personal Computer Interface (PCI). In the "Remote" mode the recloser is controlled via TCI, TDI or IOI. Indication is provided via all interfaces in both modes.

# 6.3.2 Personal Computer Interface (PCI)

The PCI provides Indication and control via a PC (with installed TELARM software). The connection is established via the USB port located on the front the Control Panel Module (CPM), via RS-232 on the RCM or via a Bluetooth module (BTM).

The PCI provides the following functionality (refer to TELARM software):

- Data upload/download;
- Firmware upload.

## Uploading/Downloading data

Data can be uploaded/downloaded via the PC (refer also to the description of the on-line mode of TELARM software) when the communication link is established. The communication link is password protected. The password is configured via the PCI at the time of the first communication session and stored in the MPM flash memory. If the control signal "Erase passwords" has been activated the password is erased. A new password can be uploaded from the PC during the next communication session.

#### **Uploading firmware**

A PC with installed TELARM is required for firmware uploading.

# 6.3.3 Telecommunication Interface (TCI)

TCI is an embedded RTU interface that can be used for remote indication and control.

The RTU is connected to the SCADA via a radio modem, phone modem, GSM modem, RS485-RS232 converter or directly.

Available communication protocols are DNP3, Modbus and IEC 60870-5-104.

# 6.3.4 Digital input/output interface (IOI)

The IOI provides control and indication via the digital Input-Output Module (IOM). The IOM provides 12 digital inputs and 12 digital outputs for SCADA control and indication. Each input/output function is individually customizable.

# 6.4 Telarm Dispatcher Interface (TDI)

The TDI enables multiple recloser connections to Tavrida Electric TELARM Dispatcher® for remote control and supervision. TELARM Dispatcher can be installed on one or multiple PCs with full or limited access to all or some of the reclosers. Connection via Internet or Local Area Network (LAN) is available. Physical connection of an RC5\_3 to the Internet can be done via wireless connection - GPRS modem (Figure 30) or wired connection - USB-Ethernet adapter (Figure 31).

Both the RC5\_3 recloser control(s) and PC(s) with TELARM software can connect to RC Internet Server software (RCIS). This software provides communication between a PC and multiple RC5\_3. RCIS itself is a Windows® service. Connection between TELARM software and RCIS is protected with SSL encryption. Individual certificates are issued for each PC with TELARM which will connect to RCIS.

Benefits of using a TDI are the following:

- Remote control is avaliable even without a SCADA system in place (or as backup for existing SCADA sytem).
- SCADA is usually available in dispacther centers only. With TDI regional operators can check protection devices remotely without any support request form the Dispatcher Center.
- Potential problems can be identified and elimenated faster because all logs from protection device, including Event log, detailed Fault profile and fault oscillography are available remotely and can be analyzed by an operator immediately after protection device has operated.

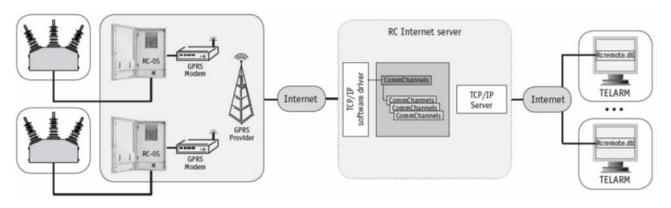



Figure 30

Structure of the system with wireless connection

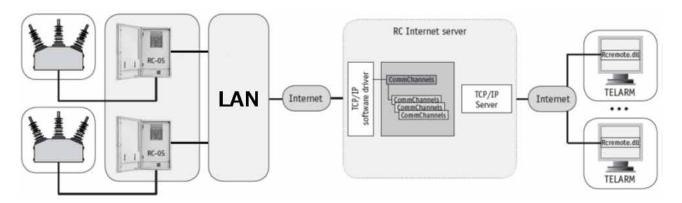
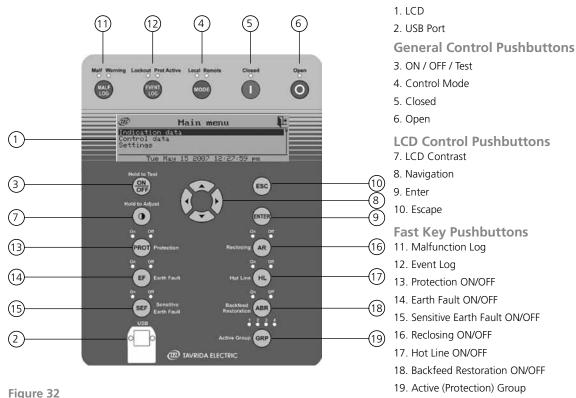




Figure 31 Structure of the system with wired connection

# 6.5 Indication

# 6.5.1 Man-Machine Interface (MMI)

The MMI provides control and indication via the Control Panel Module (CPM) if the CPM is enabled. If the CPM is disabled, no control and indication functions are supported by the MMI.



Control Panel Module (CPM)

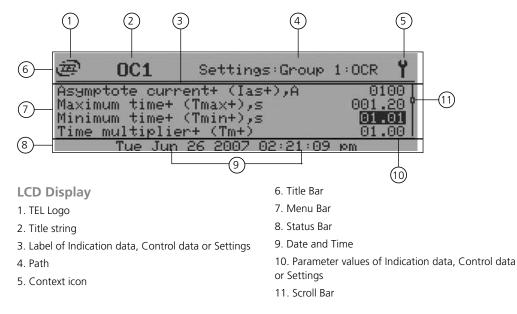



Figure 33 Liquid Crystal Display (LCD)

TAVRIDA ELECTRIC 51

The Title bar is shown in all menus and include the following elements:

- TEL logo icon
- Title string defining menu type
- Path to the current menu
- Context icon

# 7. Application notes

# 7.1 Mounting kits

Tavrida Electric can provide reclosers with pole-mounting kit for front or lateral installation.

For substation mounting kits or other options contact your local representatives.

# 7.1.1 Mounting kit for front installation

The mounting kit for front installation (see Figure 34) is applicable for Rec15/25 installation on a single wooden, concrete or metal pole. This kit shall be used with standard U/L-shaped profiles/brackets and threaded rods (not included).

For details on mounting kit dimensions refer to Figure 54 in "Appendix 2. Dimensions"

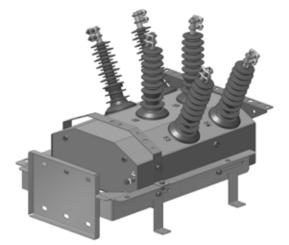



Figure 34 Mounting kit for front installation

# 7.1.2 Complete mounting kit for front installation

The mounting kit for front installation can be supplied with interface bracket allowing Rec15/25 intallation on wooden poles with 260...400 mm diameter. This kit shall be used with standard threaded rods or stainless steel bands (not included).

For details on interface bracket dimensions refer to Figure 56 in "Appendix 2. Dimensions"

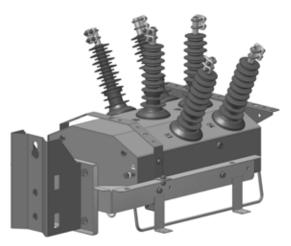
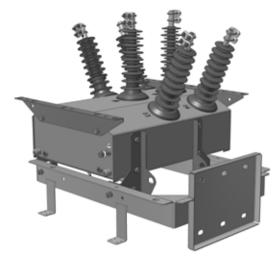



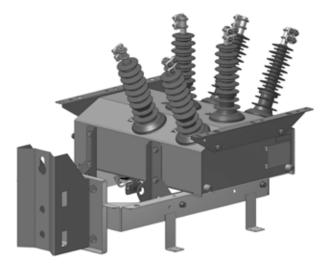

Figure 35 Complete mounting kit for front installation

# 7.1.3 Mounting kit for front or lateral installation

The mounting kit for front or lateral installation (see Figure 36) is applicable for Rec15/25 installation on wooden, concrete or metal H-pole structures. This kit shall be used with standard U/L-shaped profiles/brackets and threaded rods (not included).

For details on mounting kit dimensions refer to Figure 55 in "Appendix 2. Dimensions"




#### Figure 36 Mounting kit for front or lateral installation

This mounting kit allows installation of the Rec15/25 in a front position applicable for single poles. For details refer to Handling and Installation Guide.

# 7.1.4 Complete mounting kit for front or lateral installation

The mounting kit for front or lateral installation can be supplied with interface bracket allowing Rec15/25 intallation on wooden H-poles with 260...400 mm diameter. This kit shall be used with standard threaded rods or stainless steel bands (not included).

For details on interface bracket dimensions refer to Figure 56 in "Appendix 2. Dimensions"



```
Figure 37
Complete mounting kit for front or lateral installation
```



# 7.2 Primary line connections

# 7.2.1 Bushing extensions

OSM bushing extensions (Figure 38 and Figure 39) have cylinder endings with milled cable connection surfaces. This surface provides reliable contact area for cable or conductor connection. All parts are made of copper with Sn-Bi (tin-bismuth) coating and allow both aluminum and copper conductor connection. Terminal connectors are used to fix the cables.





Figure 38 OSM15 bushing extensions

Figure 39 OSM25 bushing extensions

Bushing extensions have threaded inserts on the butt-end made of brass with Sn-Bi coating (Figure 40). Inserts are covered by plastic plugs (Figure 41) that shall to be removed before connecting lugs.



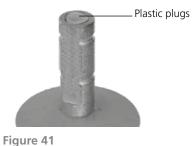



Figure 40

# 7.2.2 Conductor connection options

#### **U-bolt connectors**

U-bolt connectors (Figure 42) provides reliable connection of cable conductors with 35 to 240 mm<sup>2</sup> cross section. Each OSM package includes a set of 12 connectors by default.

U-bolts and fasteners are made of stailess steel. Clamping plate is made Si-Bn coated brass.

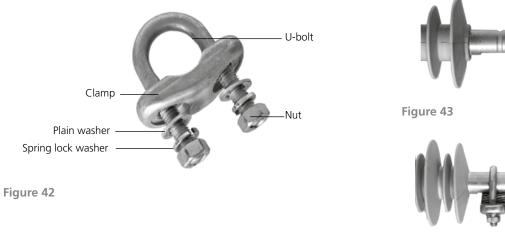



Figure 44

One connector is enough to connect conductors up to 90 mm<sup>2</sup> (Figure 43). Two connectors shall be used to connect 120 mm<sup>2</sup> and greater cross section conductors (Figure 44).

Tightening torque of connector nuts is  $15 \pm 1$  Nm.

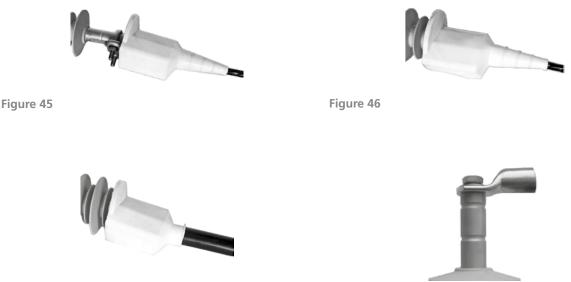



Figure 47

Figure 48

Protective covers can be used to protect connections against the environment (Figure 45 and Figure 46).

If cable diameter is more than 10 mm, the cone end of each cover shall be cut to the corresponding diameter to fit the cable tightly (Figure 47).

Lug connection

Lugs can be used to connect cables from 16 to 240 mm<sup>2</sup>.

Lugs shall have 10.5 mm holes. Lugs are fixed with M10x25 bolts. Tightening torque of 30±2 Nm shall be applied. Protective covers are not installed in this case (Figure 48).

# 7.3 Secondary equipment

## 7.3.1 Voltage transformers (VT)

An additional voltage transformer can be used for auxiliary power supply for the recloser. The VT primary voltage should correspond to the network where the recloser is installed and the secondary voltage should match the range of the recloser auxiliary power supply (for details on auxiliary power supply refer to section "7.4 Auxiliary supply" of this guide). VTs and VT mounting kits can be supplied by Tavrida Electric on request. Contact your local sales representative for further information.

## 7.3.2 Telecommunication equipment

The space available in the RC5\_3 for external modem mounting on the mounting tray is 300w x 175d x 60h mm. The RC5\_3 provides 5...15VDC auxiliary power supply voltage. Two RS232 ports are provided at the rear of the recloser control:

- port "5" (TDI) for connection of GPRS modem communicating with remote TELARM and for local RS-232 connection with TELARM.
- port "6" (TCI) for connection of RTU communicating with SCADA. The modem shall be mounted using the special tray through mounting holes.

# 7.4 Auxiliary supply

## **Connection of Power Supply Cables**

The RC5\_3 cubicle can be fitted with two separate AC/DC supply inputs. Auxiliary power sources with 85...265 VAC or 110...220 VDC voltage can be used.

If a DC power supply is used, standard RC MCCB can not provide protection against short circuits. In this case, the 3A DC MCCB with characteristic C should be used for protection.

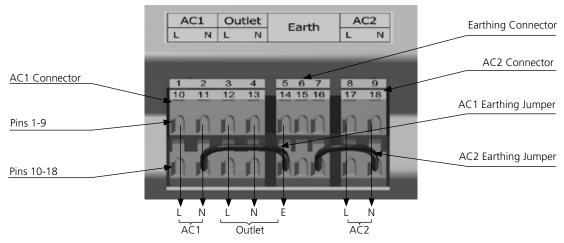


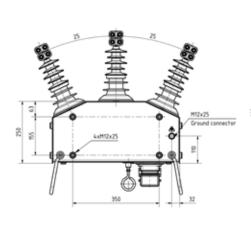

Figure 49 Auxiliary supply wiring inside PSFM

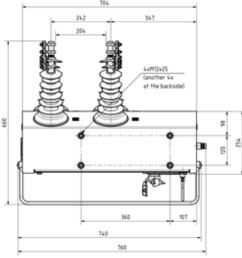
# **Appendix 1. Type tests**

# Type tests of Rec15\_Al1\_5

| Standard         | Chapter | Test name                                                          | Test center<br>name | Test report             |
|------------------|---------|--------------------------------------------------------------------|---------------------|-------------------------|
| IEEE C37.60-2003 | 6.2.6.1 | Power-frequency withstand voltage test (dry)                       | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.2.6.1 | Power-frequency withstand voltage test (wet)                       | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.7     | Partial discharge tests                                            | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.2.6.2 | Lightning impulse withstand voltage test                           | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.7     | DC withstand voltage test                                          | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.111   | Control electronic elements surge withstand capabil-<br>ity tests  | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.107   | Surge current tests                                                | PowerTech           | PowerTech_18490-27      |
| IEEE C37.60-2003 | 6.4     | Measurement of the resistance of the main circuit                  | PowerTech           | PowerTech_18919-21-00   |
| IEEE C37.60-2003 | 6.5     | Temperature-rise tests                                             | PowerTech           | PowerTech_18919-21-00   |
| IEEE C37.60-2005 | 6.101   | Line charging and cable charging current tests                     | PowerTech           | PowerTech_18930-26      |
| IEEE C37.60-2005 | 6.3.2.1 | Load switching tests                                               | PowerTech           | PowerTech_18930-26      |
| IEEE C37.74-2003 | 6.3.2.3 | Transformer magnetizing current switching tests                    | PowerTech           | PowerTech_18930-26      |
| IEEE C37.60-2003 | 6.109   | Mechanical duty tests                                              | PowerTech           | PowerTech_18919-21-REP4 |
| IEEE C37.60-2003 | 6.105   | Minimum tripping current tests                                     | PowerTech           | PowerTech_18919-21-REP3 |
| IEEE C37.60-2003 | 6.108   | Time-current tests                                                 | PowerTech           | PowerTech_18919-21-REP2 |
| IEEE C37.60-2003 | 6.103   | Rated symmetrical interruption test (standard opera-<br>tion duty) | KEMA                | KEMA_109-04             |
| IEEE C37.60-2003 | 6.102   | Making current tests                                               | KEMA                | KEMA_109-04             |

# Type tests of Rec25\_Al1\_5


| Standard            | Chapter | Test name                                    | Test center<br>name | Test report               |
|---------------------|---------|----------------------------------------------|---------------------|---------------------------|
| IEEE C37.60-2003    | 6.2.6.1 | Dower frequency withstand valtage test (dm)  | CESI                | CESI_A8026525             |
| ESKOM specification | -       | Power-frequency withstand voltage test (dry) | CESI                | CESI_B1009180             |
| IEEE C37.60-2003    | 6.2.6.1 | Power-frequency withstand voltage test (wet) | CESI                | CESI_A8026525             |
| ESKOM specification | -       |                                              | CESI                | CESI_B1009180             |
| CEMIG specification | -       |                                              | KEMA                | KEMA Final TDT 1473-10 V1 |
| IEEE C37.60-2003    | 6.7     | Partial discharge tests                      | CESI                | CESI_A8034569             |
| IEEE C37.60-2003    | 6.2.6.2 | Lightning impulse withstand voltage test     | CESI                | CESI_A8026525             |
| IEEE C37.60-2003    | 6.2.6.2 |                                              | KEMA                | KEMA Final TDT 1473-10 V1 |
| ESKOM specification | -       |                                              | CESI                | CESI_A9021639             |


| IEEE C37.60-2005         | 6.6     | Short time withstand current and peak withstand current tests                   | CESI                | CESI_A8028049<br>CESI_A9007127               |
|--------------------------|---------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------|
| IEEE C37.60-2005         | 6.4     | Measurement of the resistance of the main circuit                               | CESI                | CESI_A8027496                                |
| IEEE C37.60-2005         | 6.5     | Temperature-rise tests                                                          | CESI                | CESI_A8027496                                |
| IEEE C37.60-2005         | 6.101   | Line charging and cable charging current tests                                  | CESI                | CESI _A8028049<br>CESI_A9007127              |
| IEEE C37.60-2005         | 6.3.2.1 | Load switching tests                                                            | CESI                | CESI _A8028049<br>CESI_A9007127              |
| IEEE C37.60-2003         | 6.109   | Mechanical duty tests                                                           | CESI                | CESI_A8034408                                |
| IEEE C37.60-2005         | 6.105   | Minimum tripping current tests                                                  | CESI                | CESI_A8027496                                |
| IEEE C37.60-2003         | 6.108   | Time-current tests                                                              | KEMA                | KEMA Final TDT 1510-10 V1                    |
| IEEE C37.60-2005         | 6.103   | Rated symmetrical interrupting current tests                                    | CESI                | CESI _A8028049<br>CESI_A9007127              |
| IEEE C37.60-2005         | 6.102   | Making current tests                                                            | CESI                | CESI _A8028049<br>CESI_A9007127              |
| IEC 62271-1              | 6.10.6  | Power-frequency withstand voltage test on auxilia-<br>ry and control circuits   | CESI                | CESI_A8034569                                |
| IEC 60664<br>IEC 60255-5 | -       | Lightning impulse withstand voltage test on auxil-<br>iary and control circuits | CESI                | CESI_A8034569                                |
| IEC 60068-2-1            | -       | Cold test - operational                                                         | KEMA                | KEMA Final TIC 1471-12 V1                    |
| IEC 60068-2-2            | -       | Dry heat test - operational                                                     | KEMA                | KEMA Final TIC 1471-12 V1                    |
| IEC 60068-2-30           | -       | Cyclic temperature with humidity test - operational                             | KEMA                | KEMA Final TIC 1471-12 V1                    |
| EDP_07-0969 rev 1F       | -       | Battery test                                                                    | KEMA                | KEMA Final TIC 1471-12 V1                    |
| IEC 60529                | -       | Enclosure protection test                                                       | KEMA<br>TEL TestLab | KEMA Final TIC 1471-12 V1<br>EDRTL_216-2013E |
| IEC 60870-5-104 Ed.2     | -       | Communication protocol test                                                     | KEMA                | KEMA Final TIC 1471-12 V1<br>KEMA 12-01304   |
| ESKOM specification      | -       | Pollution test (KIPTS)                                                          | KIPTS               | KIPTS 31-07-2010                             |

# **Appendix 2. Dimensions**



# **OSM15** dimensions





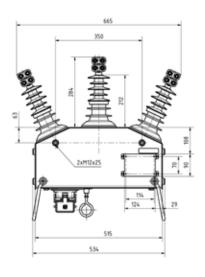



Figure 50 OSM15\_AI\_1(4) Dimensions

Table 57 - OSM15\_Al\_1(2) and OSM25\_Al\_1(2) dimensions

|                   | Dimensions, mm    |                              |             |  |
|-------------------|-------------------|------------------------------|-------------|--|
| Rated voltage, kV | Creepage distance | Minimum taut string distance | Weights, kg |  |
| 15.5              | 500               | 204                          | 68          |  |
| 27                | 860               | 204                          | 72          |  |

# **OSM25** dimensions

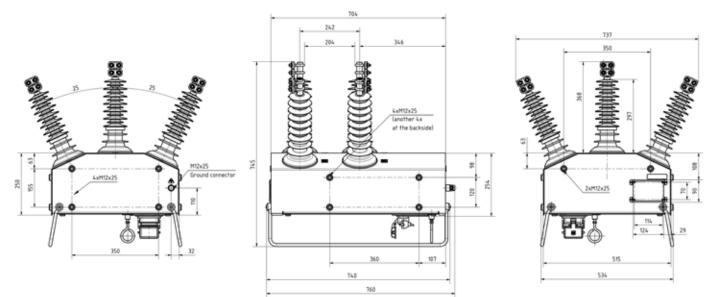
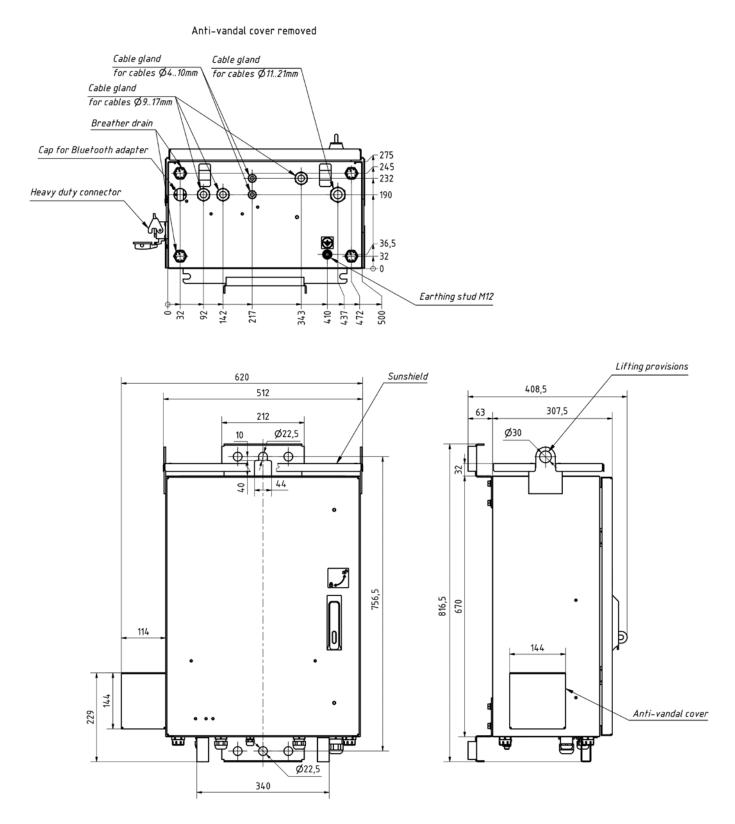
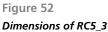
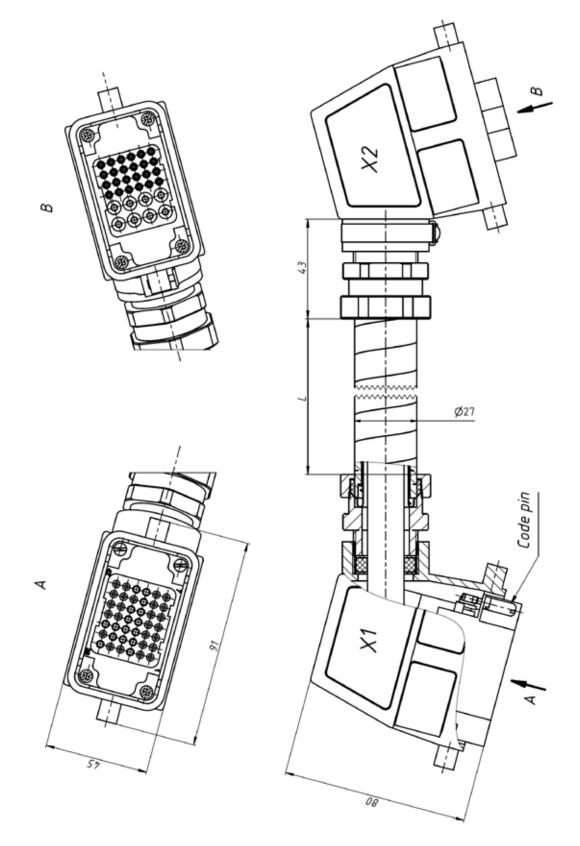





Figure 51 OSM25\_AI\_1(4) Dimensions


# **RC5\_3 dimensions**

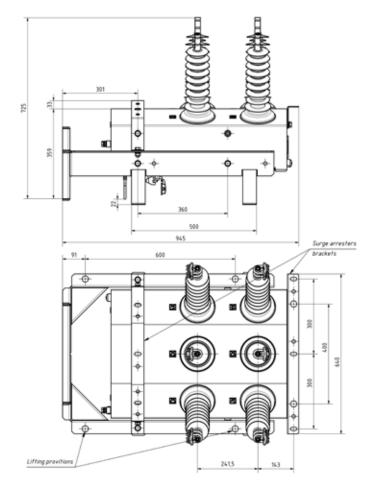






# **Umbilical cable dimensions**






Dimensions of Umbilical cable

Table 58 - Umbilical cable characteristics

|                 |      | • • • • • • • • • • • • • • • • • • • • |
|-----------------|------|-----------------------------------------|
| Part number     | L, m | Weights, kg                             |
| Umbilical_4(6)  | 6    | 5.6                                     |
| Umbilical_4(7)  | 7    | 6.5                                     |
| Umbilical_4(12) | 12   | 11.2                                    |

# Mounting kit dimensions



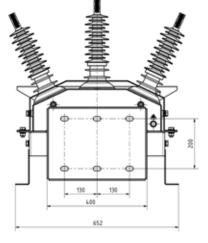
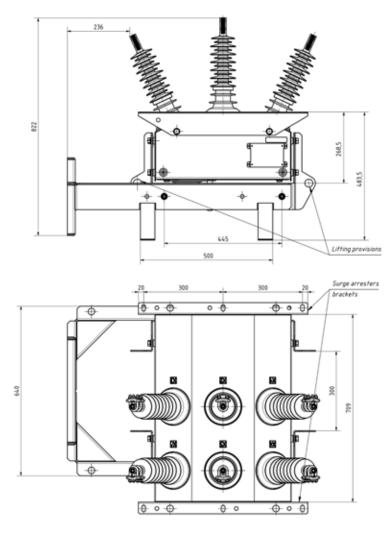




Figure 54

Mounting kit for front installation dimensions



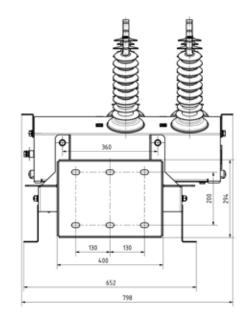



Figure 55 Mounting kit for front and lateral installation dimensions

# Interface bracket dimensions

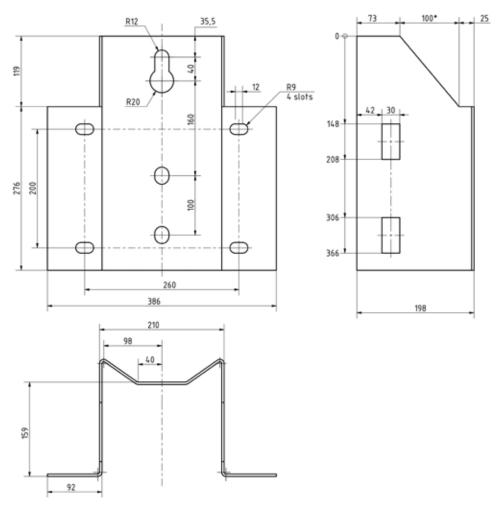



Figure 56 Interface bracket dimensions



# Terminal connector dimensions and weights

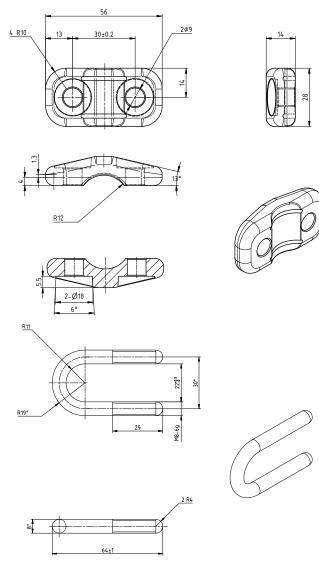
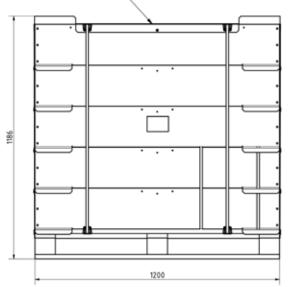




Figure 57 U-bolt terminal connector Weight: 0.3 kg

# Package dimensions

Galvanized steel cover



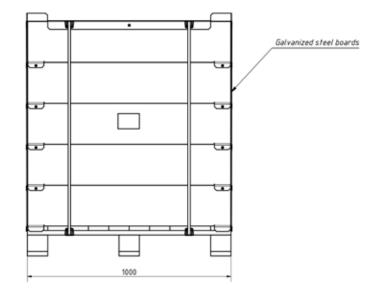



Figure 58 Recloser package dimensions

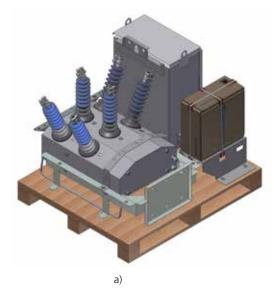
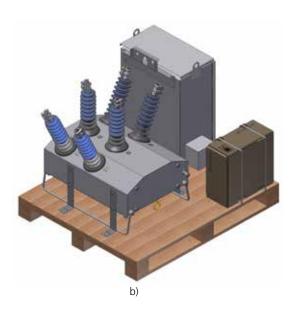




Figure 59 Placement of recloser components in a box: a) with mounting kit;

a) with mounting kit; b) without mounting kit.





#### Switzerland Tavrida Electric AG

Rheinweg 4, 8200 Schaffhausen, Switzerland Phone: +41 (0) 52 630 26 00 Fax: +41 (0) 52 630 26 09 E-Mail: info@tavrida.ch Web: www.tavrida.ch

#### **Brazil** Tavrida Electric do Brazil

Av. Ireno da Silva Venâncio, 199 GP04A - Protestantes Votorantim / SP, Brazil Telefone: +55 (15) 3243-2555 Fax: +55 (15) 3243-4233 E-Mail: info@tavrida.com.br Web: www.tavrida.com.br

### India

Tavrida Electric India Private Limited

15 NC, Block-A, New Alipore Kolkata - 700 053, West Bengal, India Phone: +91 33 2488 1715/3260 8634 Fax: +91 33 2488 1766 E-Mail: info@tavrida.in Web: www.tavrida.in

#### South Africa Tavrida Electric Africa (Pty) Ltd.

Cnr.Van Dyk and Commissioner Streets Boksburg East, Gauteng, 1459, Republic of South Africa Phone: +27 11 9142199 Fax: +27 11 9142323 E-Mail: support@tavrida.co.za Web: www.tavrida.co.za

#### **China** Tavrida Electric (Qingdao) Co., Ltd.

No. 336, Songling Road, Laoshan District 266104 Qingdao, China Phone: +86 (532)-55552366 Fax: +86 (532)-55552377 E-Mail: info@tavrida.cn Web: www.tavrida.cn

This document is copyright and is intended for users and distributors of Tavrida Electric product. It contains information that is the intellectual property of Tavrida Electric and the document, or any part thereof, should not be copied or reproduced in any form without written permission from Tavrida Electric.

Tavrida Electric applies a policy of ongoing development and reserves the right to change product without notice. Tavrida Electric does not accept any responsibility for loss or damage incurred as a result of acting or refraining from action based on information in this Product Guide.

Document code:

TES\_RecDoc\_PG\_Rec15-25

Version:

Rev 1.0

Date:

12/02/2016