

VCB

VACUUM CIRCUIT BREAKER

17,5 kV, ...31,5 kA, ...3150 A 24 kV, ...25 kA, ...2500 A

Contents

1. Product Description	5
1.1 Abbreviations	6
1.2 Main Technical Parameters	7
1.3 Disclaimers	16
1.4 Precautions	16
1.5 Warranty	16
2. Nameplates and Seals	17
2.1 ISM Nameplates and Seals	18
2.2 CM Nameplates and Seals	19
2.3 Manual Generator Nameplates	21
3. Product Handling	23
3.1 Transportation	24
3.2 Storage	24
3.3 Unpacking and Inspection	24
3.3.1 VCB Unpacking and Check	24
3.3.2 VCB Packaging and Scope of Supply	26
3.3.3 CM Packaging and Scope of Supply	27
3.3.4 ISM Packaging and Scope of Supply	28
3.3.5 VCB Accessories Unpacking and Check	34
3.4 Handling	43
4. Installation	45
4.1 Primary Part	46
4.1.1 Preparation	46
4.1.2 Installation of the ISM	46
4.1.3 Main Terminal Connections of ISM15_LD_1, ISM15_LD_3,	
ISM15_LD_6,ISM15_LD_8 , ISM25_LD_1, ISM25_LD_2, ISM25_LD_3	52
4.1.4 Main Terminal Connections of ISM15_MD_1, ISM15_MD_3,	
ISM15_Shell_2, ISM15_HD_1, ISM25_Shell_2	55
4.1.5 ISM15_LD_1, LD_3, LD_6, ISM25_LD_1, LD_2, LD_3 Interlocks	66
4.1.6 LD_8, MD_1, MD_3, SHELL_2, HD_1 Interlocks	74
4.1.7 Installation of ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1,	
ISM25_Shell_2 Main Contacts Position Indicator	88
4.1.8 Installation of Insulation kit CBkit_Ins_4	90
4.1.9 Protective Earthing	92
4.2 Secondary Part	94
4.2.1 Three-Phase ISM Secondary Connections	94
4.2.2 Single-Phase ISM Secondary Connections	96
4.2.3 CM Secondary Connections	98
4.2.4 Installation of the CM	99
4.2.5 Installation of Secondary Cables Between ISM and CM	100
4.2.6 Auxiliary Supply	103
4.2.7 CM Indication	104
4.2.8 CM Relay Contacts Operation	105
5. Commissioning	107
6. Operation	. 115
6.1 Switching	116
6.1.1 Closing	. 116
6.1.2 Opening	11/
6.1.3 Emergency Opening	
7.1 Primary Circuits	1.115
7.1 FHIIIdly CIICUIS	120 120
7.2 Secondary Circuits	1.122
7.5 Troubleshooling	IZ3 175
Annendix 1 VCB Package Dimensions and Weights	. 120 107
Appendix 2. Overall Drawings	. 170
Appendix 3. Secondary Schemes	152
List of changes	165

1. Product Description

This User Guide describes the Vacuum Circuit Breakers manufactured by Tavrida Electric.

Tavrida Electric circuit breakers are designed for rated voltages up to 24 kV.

Vacuum Circuit Breakers described in the current document can be used in various kinds of switchgear and RMUs and are intended to perform switching operations in network rated and faulty modes.

The breakers are comprised of following main components:

• Indoor Switching Module (ISM) - The air insulated ISM incorporates Tavrida Electric vacuum interrupters with monostable magnetic actuators and solid dielectric insulating materials. No SF-6 or oil insulation is used in the ISM;

• Control Module (CM) - The CM is a microprocessor based controller that provides ISM operation, protection and data logging functions;

• Kits - The kits of components are used to provide circuit breaker application properties.

This guide contains information on switching operations, required check-ups and maintenance, as well as service and disposal procedures. The purpose of the document is to provide necessary product information for users providing installation, commissioning and utilizing installed equipment.

1.1 Abbreviations

AC	Actuator Coil
AS	Auxiliary Switch
BIL	Basic Insulation Level
EMC	Electromagnetic Compatibility
CM	Control Module
СО	Close - Open Operations Cycle
Com	Common Point of Contact
I/O	Input / Output
ISM	Indoor Switching Module
LED	Light Emitting Diode
(P)MCB	Protective Miniature Circuit Breaker
PS	Position Switch
NA	Not Applicable
NC	Normally Closed Contact
NO	Normally Open Contact
PCD	Phase Center Distance
USB	Universal Serial Bus
VCB	Vacuum Circuit Breaker
\vee	Vacuum Interrupter

1.2 Main Technical Parameters

Main technical data and circuit breaker technical parameters are presented in the tables below.

Table 1	- \	/CB15	Technical	Parameters
---------	-----	--------------	------------------	------------

	VCB15_									
Туре	LC	01	LD3	LD6	LD8	MD1	MD3	Shell2	HI	D1
Rated voltage (Ur)	12 kV	17.5 kV	12 kV	12 kV	17.5 kV	17.5 kV	17.5 kV	17.5 kV	17.5	5 kV
Phase centre distance (PCD), mm	150 180 210	180 210	-	133	150 210	150 180 210 275	-	150 210 275	210 275	275
Rated normal current (Ir)	800) A	800 A	630 A	800 A	1250 A	1250 A	1250 A ¹⁾ 2000 A	2500 A ²⁾	3150 A ³⁾
Rated power frequency withstand voltage (Ud)	28 (42) ⁴⁾ kV	38 (42) ⁴⁾ kV	28 (42) ⁴⁾ kV	28 (42) ⁴⁾ kV	38 (42) ⁴⁾ kV	38 (42) ⁴⁾ kV	38 (42) ⁴⁾ kV	38 (42) ⁴⁾ kV	38 (42	2) ⁴⁾ kV
Rated lightning impulse withstand voltage (peak) (Up)	75 kV	95 kV	75 kV	75 kV	95 kV	95 kV 5)	95 kV 5)	95 kV 6)	95	kV
Rated short-circuit breaking current (lsc)	20 k	(A ⁷⁾	20 kA 7)	20 kA 7)	25 kA ¹⁹⁾	31.5 kA 7)	31.5 kA 7)	31.5 kA 7)	31.5	kA 7)
Rated peak withstand current (Ip)	52	kA	52kA	52 kA	65 kA	82 kA	82 kA	82 kA	82	kA
Rated short-time withstand current (lk)	20	kA	20 kA	20 kA	25 kA	31.5 kA	31.5 kA	31.5 kA	31.5	5 kA
Rated duration of short circuit (tk)	4	S	4 s	4 s	4 s	4 s	4 s	4 s	4	S
Rated frequency (fr)					50/60	Hz				
Mechanical life (CO-cycles)	50 (000	50 000	20 000	50 000	30 000	50 000	30 000 ⁸⁾	30	000
Maximum number of CO-cycles per hour					60)				
Operating cycles, rated-short circuit breaking current	10	00	100	100	100	50	50	50	5	0
Closing time	≤ 70	⁹⁾ ms	≤ 70 ⁹⁾ ms	\leq 70 ⁹⁾ ms	≤ 70 ⁹⁾ ms	\leq 60 $^{9)}$ ms	≤ 60 ⁹⁾ ms	≤ 60 ⁹⁾ ms	≤ 60	⁹⁾ ms
Opening time					≤ 35 ⁹	⁾ ms				
Break time					≤ 45 ⁹	⁾ ms				
Rated operating sequence at rated normal current					O-0.3s-CO-10s-	CO-10s-CO ¹⁰⁾				
Rated operating sequence at rated short-circuit breaking current					O-0.3s-CO	-15s-CO				

Table 1 - VCB15 Technical Parameters

				VCB1	15_				
Туре	LD1	LD3	LD6	LD8	MD1	MD3	Shell2	HD1	
	Auxiliary Circuits Insulation Strength 11)								
Power frequency test voltage (1 min) according to IEC60255-27				2 k'	V				
Lightning impulse 1.2 m s/50 m s/0.5 J according to IEC60255-27				5 k'	V				
Insulation resistance, 1000V DC according to IEC60255- 27				≥ 5 M0	Dhm				
Design class of switching module with regard to severity of service conditions in accordance with IEC 60932	Class 1	Class 1	Class 1	Class 1	Class 0	Class 0	Class 0	Class 0	
Standards				IEC 62271-100 C	GB 1984- 2003				
Mechanical vibration withstand capability according to IEC 60721-3-4		Class 4M4							
Resistance of main circuit	≤ 40 µOhm	\leq 40 µOhm	≤ 40 µOhm	≤ 40 µOhm	≤ 17 µOhm	≤ 17 µOhm	≤ 18 µOhm	≤ 15 µOhm	
Weight (depending on Phase centre distance)	34-36 kg	13 kg	55 kg	26 kg	33-35 kg	13 kg	51-55 kg	70-72 kg	
Weight of CM				1 k	g				
Overall dimensions of CM ¹²⁾				190x165x	45 mm				
Altitude above sea level				1000 г	n ¹³⁾				
Relative humidity in 24 hours				≤ 95	%				
Relative humidity over 1 month				≤ 90	%				
Temperature Range				-25 °C	+55 °C				
Degree of protection according to IEC 60529 of actuator compartment				IP4	0				
Type of driving mechanism				Monostable mag	netic actuator				
	Design, Swit	ching Capacity	/ of Silver Aux	iliary Contacts					
Number of available auxiliary contacts for three-phase ISM	6 NO + 6 NC	2 NO + 2 NC	6 NO + 6 NC	Variable:Up to 12NO+12NC	6 NO + 6 NC	2 NO + 2 NC	6 NO + 6 NC	6 NO + 6 NC	
Minimum current for 12 V AC / DC, ohmic load		Ì	·	100 r	nA				
Minimum current for 12 V AC / DC, inductive load (t=20 ms, cosj =0,3)				100 r	mA				
Maximum current for 30 V DC, ohmic load				10 A	15)				

VCB15 Type LD1 LD3 LD6 LD8 MD1 MD3 Shell2 HD1 Maximum current for 30 V DC, inductive load (t=20 ms) 3 A Maximum current for 60 V DC, ohmic load 0.9 A Maximum current for 60 V DC, inductive load (t=20 ms) 09A Maximum current for 125 V DC, ohmic load 0.5 A Maximum current for 125 V DC, inductive load (t=20 ms) 0.03 A Maximum current for 250 V DC, ohmic load 0.25 A Maximum current for 250 V DC, inductive load (t=20 ms) 0.03 A Maximum current for 125 V AC, ohmic load 10 A ¹⁴⁾ Maximum current for 125 V AC, inductive load 5 A $(\cos j = 0,3)$ Maximum current for 250 V AC, ohmic load 10 A ¹⁴⁾ Maximum current for 250 V AC, inductive load 5 A $(\cos i = 0,3)$ Design, Switching Capacity of Gold-Plated Auxiliary Contacts ¹⁵⁾ Number of available auxiliary contacts for three-phase -_ _ ISM Minimum current for 5 V AC / DC 1 mA Maximum current for 10 V AC / DC 300 mA Maximum current for 30 V AC / DC 100 mA Maximum voltage AC / DC 30 V **CM** Reaction Times Preparation time for the operation of the CM after ≤ 15 s switching on the auxiliary power supply Preparation time for the close operation of the CM after ≤ 10 s a previous close operation Preparation time for the trip operation of the CM after ≤ 0.1 s switching on the auxiliary power supply Trip capability after failure of the auxiliary power supply $\geq 60 \text{ s}^{-16)}$

Table 1 - VCB15 Technical Parameters

Table 1 - VCB15 Technical Parameters

	VCB15_								
Туре	LD1	LD3	LD6	LD8	MD1	MD3	Shell2	HD1	
CM Supply Voltage									
Rated range of supply voltage of	24V to 60V DC								
CM_16_1(Par1_60.2_Par2Par3_Par4_Par5) Rated range of supply voltage of									
CM_16_1(Par1_220.2_Par3_Par4_Par5)				110V to 22	0V AC/DC				
Operating range (80-120%) of CM_16_1(Par1_60.2_Par3_Par4_Par5)				19V to 7	72V DC				
Operating range (80-120%) of CM_16_1(Par1_220.2_Par3_Par4_Par5)				85V to 265	5V AC/DC				
		CM Power	Consumption						
Charging the close and trip capacitors of CM_16_1(Par1_60.2_Par3_Par4_Par5)	≤ 25 W								
Charging the close and trip capacitors of CM_16_1(Par1_220.2_Par3_Par4_Par5)	\leq 42 W AC ¹⁷⁾ \leq 37 W DC								
Permanent power consumption (standby) of CM_16_1(Par1_60.2_Par3_Par4_Par5)				≤ 5	W				
Permanent power consumption (standby) of CM_16_1(Par1_220.2_Par3_Par4_Par5)				\leq 7 W AC ¹⁸	³⁾ ≤ 5 W DC				
Inrush current of CM_16_1(Par1_60.2_Par3_Par4_Par5) with discharged capacitors				≤ 12	0 A				
Inrush current of CM_16_1(Par1_220.2_Par3_Par4_Par5) with discharged capacitors				≤ 18	3 A				
Inrush time constant of CM_16_1(Par1_60.2_Par3_Par4_ Par5) with discharged capacitors				≤ 0.5	i ms				
Inrush time constant of CM_16_1(Par1_220.2_Par3_ Par4_Par5) with discharged capacitors	≤ 4 ms								
	Design, S	Switching Capa	city of CM In	built Relays					
Number of relays in CM				3					
Number of available contacts for one relay			1	NO + 1 NC with	n common poi	nt			

Table 1 - VCB15 Technical Parameters

	VCB15_							
Туре	LD1	LD3	LD6	LD8	MD1	MD3	Shell2	HD1
Rated voltage				240	V			
Rated current AC				16 /	4			
Maximum breaking power AC				4000	VA			
Maximum switching current 250 V DC	0.35 A							
Maximum switching current 125 V DC	0.45 A							
Maximum switching current 48 V DC				1.3	A			
Maximum switching current 24 V DC				12 /	4			
Switching time				5 m	S			
	"Close"	and "Trip" Dry	Contacts Inp	uts of CM				
Output voltage				≥ 30	V			
Contacts closed current				≥ 50 ו	mA			
Steady state current				≥ 5 n	ηA			

1) For VCB ISM15_Shell with Low upper terminal – up to 1250 A, with High upper terminal – up to 2000 A.

2) Rating for metal enclosed switchgear with limited ventilation. Temperature rise type test at 2500 A in Cradle was successfully passed in KEMA.

3) 3150 A – for PCD 275 mm.

4) The information in brackets refers to the national Chinese standards GB1984-2003 at an installation altitude of 1000 m maximum.

5) Parameter valid only when ISM is used with insulation kit. For details see dimensional drawings and accessory information.

6) Parameter valid only when ISM is used with insulation caps. For details see dimensional drawings and accessory information.

7) At 40% d.c. component.

8) 10 000 CO – for ISM15_Shell_2(150_L) and ISM15_Shell_2(210_L) in horizontal actuator position.

9) Smaller timing on request.

10) The number of sequential Close-Trip operations with a 10 second interval should not exceed 10. The number of Close-Trip operations should not exceed 60 per hour. Sequence of 10s Close-Trip operations can be repeated only after 260 s pause.

11) Isolation resistance check is not applicable for "Actuator Coil" circuits of CM.

12) Overall dimensions of ISM are given in "Appendix 2. Overall Drawings".

13) Up to an installation altitude of 1000 m above sea level. Above 1000m, the external insulation measurement of the ISM must be increased by the atmospheric correction factor Ka according to IEC 62271-1 compared to the insulation measurement at sea level. The maximum allowed altitude is 2000 m above sea level.

14) At 5 min short-term duty. Continuous current – 5 A.

15) Gold-plated auxiliary contacts are availbale on request. Contact your nearest sales representatives.

16) In case of Dry contacts "Close" and "Trip" are open.

17) At Cos j >0.66.

18) At Cos j >0.33.

19) At 34% d.c. component.

		VCB	25_				
Туре	LD1	LD2	LD3	Shell2			
Rated voltage (Ur)	24 kV	24 kV	24 kV	24 kV			
Phase centre distance (PCD), mm	210 275	150	-	210 275			
Rated normal current (Ir)	800 A	800 A	800 A	2500 A			
Rated power frequency withstand voltage (Ud)	50 kV	50 kV	50 kV	50 kV			
Rated lightning impulse withstand voltage (peak) (Up)	125 kV	125 kV	125 kV	125 kV			
Rated short-circuit breaking current (Isc)	20 kA ^{1.}	20 kA ^{1.}	20 kA ^{1.}	25 kA ^{1.}			
Rated peak withstand current (Ip)	52 kA	52 kA	52 kA	65 kA			
Rated short-time withstand current (Ik)	20 kA	20 kA	20 kA	25 kA			
Rated duration of short circuit (tk)	3 s 3 s 3 s 4 s						
Rated frequency (fr)	50/60 Hz						
Mechanical life (CO-cycles)	30 000						
Maximum number of CO-cycles per hour	60						
Operating cycles, rated-short circuit breaking current	50	50	50	25			
Closing time		≤ 60	^{2.} ms				
Opening time		≤ 35	^{2.} ms				
Break time		≤ 45	^{2.} ms				
Rated operating sequence at rated normal current		O-0.3s-CO-10s	5-CO-10s-CO ^{3.}				
Rated operating sequence at rated short-circuit		0-0.3s-C0	D-15s-CO				
Auxiliar	v Circuits Insulation Strend						
Power frequency test voltage (1 min) according to IEC60255-27		2	<٧				
Lightning impulse 1.2 m s/50 m s/0.5 J according to IEC60255-27		5	<v< td=""><td></td></v<>				
Insulation resistance, 1000V DC according to IEC60255-27		≥ 5 N	IOhm				
Design class of switching module with regard to severity of service conditions in accordance with IEC 60932	Class 0	Class 1	Class 0	Class 0			
Standards		IEC 622	71-100				
Mechanical vibration withstand capability according to IEC 60721-3-4	Class 4M4						

Table 2 - VCB25 Technical Parameters

	VCB25_						
Туре	LD1	LD2	LD3	Shell2			
Resistance of main circuit	≤ 40 µOhm	≤ 40 µOhm	≤ 40 µOhm	≤ 17 µOhm			
Weight (depending on Phase centre distance)	35-38 kg	35-37 kg	14 kg	53-55 kg			
Weight of CM		1	kg	,			
Overall dimensions of CM ^{5.}		190x165	x45 mm				
Altitude above sea level		1000) m ^{6.}				
Relative humidity in 24 hours		≤ 95	5 %				
Relative humidity over 1 month		≤ 90) %				
Temperature Range		-25 °C	. +55 °C				
Degree of protection according to IEC 60529 of actuator compartment		IP4	10				
Type of driving mechanism		Monostable ma	gnetic actuator				
Design, Switching Capacity of Silver Auxiliary Contacts							
Number of available auxiliary contacts for three-phase ISM	6 NO + 6 NC	6 NO + 6 NC	2 NO + 2 NC	6 NO + 6 NC			
Minimum current for 12 V AC / DC, ohmic load		100	mA				
Minimum current for 12 V AC / DC, inductive load		100	mΛ				
(t=20 ms, cosj =0,3)		100					
Maximum current for 30 V DC, ohmic load		10 .	A ^{8.}				
Maximum current for 30 V DC, inductive load (t=20 ms)		3	A				
Maximum current for 60 V DC, ohmic load		0.9	A				
Maximum current for 60 V DC, inductive load (t=20 ms)		0.9	A				
Maximum current for 125 V DC, ohmic load		0.5	δA				
Maximum current for 125 V DC, inductive load (t=20 ms)		0.0	3 A				
Maximum current for 250 V DC, ohmic load		0.2	5 A				
Maximum current for 250 V DC, inductive load (t=20 ms)		0.0	3 A				
Maximum current for 125 V AC, ohmic load		10 .	A ^{7.}				
Maximum current for 125 V AC, inductive load		Ę	٨				
(cosj =0,3)			A				
Maximum current for 250 V AC, ohmic load		10	A ^{7.}				
Maximum current for 250 V AC, inductive load (cosj =0,3)		5	A				

Table 2 - VCB25 Technical Parameters

	VCB25_						
Туре	LD1	LD2	LD3	Shell2			
Design, Switching Ca	pacity of Gold-Plated Auxiliary Contacts ⁸						
Number of available auxiliary contacts for three-phase ISM	6 NO + 6 NC						
Minimum current for 5 V AC / DC	1 mA						
Maximum current for 10 V AC / DC		300	mA				
Maximum current for 30 V AC / DC		100	mA				
Maximum voltage AC / DC		30) V				
	CM Reaction Times						
Preparation time for the operation of the CM after switching on the auxiliary power		< 1	5 c				
supply			J 3				
Preparation time for the close operation of the CM after a previous close operation		≤ 1	0 s				
Preparation time for the trip operation of the CM after switching on the auxiliary		< 0	1 s				
power supply							
Trip capability after failure of the auxiliary power supply		≥ 60) s ^{9.}				
	CM Supply Voltage						
Rated range of supply voltage of CM_16_1(Par1_60.2_Par2Par3_Par4_Par5)		24V to	60V DC				
Rated range of supply voltage of CM_16_1(Par1_220.2_Par3_Par4_Par5)		110V to 22	20V AC/DC				
Operating range (80-120%) of CM_16_1(Par1_60.2_Par3_Par4_Par5)		19V to	72V DC				
Operating range (80-120%) of CM_16_1(Par1_220.2_Par3_Par4_Par5)		85V to 26	5V AC/DC				
C	M Power Consumption						
Charging the close and trip capacitors of CM_16_1(Par1_60.2_Par3_Par4_Par5)		≤ 2!	5 W				
Charging the close and trip capacitors of CM_16_1(Par1_220.2_Par3_Par4_Par5)		\leq 42 W AC ¹	^{0.} ≤ 37 W DC				
Permanent power consumption (standby) of CM_16_1(Par1_60.2_Par3_Par4_Par5)		≤ 5	5 W				
Permanent power consumption (standby) of CM_16_1(Par1_220.2_Par3_Par4_Par5)		\leq 7 W AC 1	$1. \leq 5 \text{ W DC}$				
Inrush current of CM_16_1(Par1_60.2_Par3_Par4_Par5) with discharged capacitors		≤ 12	20 A				
Inrush current of CM_16_1(Par1_220.2_Par3_Par4_Par5) with discharged capacitors		≤ 1	8 A				
Inrush time constant of CM_16_1(Par1_60.2_Par3_Par4_Par5)		< 0.1	5 mc				
with discharged capacitors		≤ 0.:					
Inrush time constant of CM_16_1(Par1_220.2_Par3_Par4_Par5)		< 1	ms				
with discharged capacitors			1113				

Table 2 - VCB25 Technical Parameters

	VCB25_						
Туре	LD1	LD2	LD3	Shell2			
Design, Switching Capacity of CM Inbuilt Relays							
Number of relays in CM	3						
Number of available contacts for one relay		1 NO + 1 NC wit	h common point				
Rated voltage		240) V				
Rated current AC	16 A						
Maximum breaking power AC	4000 VA						
Maximum switching current 250 V DC		0.3	5 A				
Maximum switching current 125 V DC		0.4	5 A				
Maximum switching current 48 V DC		1.3	3 A				
Maximum switching current 24 V DC		12	А				
Switching time		5 r	ms				
"Close" and	l "Trip" Dry Contacts Input	s of CM					
Output voltage		≥ 3	0 V				
Contacts closed current		≥ 50	mA				
Steady state current		≥ 5	mA				

1. At 34 % d.c. component.

2. Smaller timing on request.

3. The number of sequential Close-Trip operations with a 10 second interval should not exceed 10. The number of Close-Trip operations should not exceed 60 per hour. Sequence of 10s Close-Trip operations can be repeated only after 260 s pause.

4. Isolation resistance check is not applicable for "Actuator Coil" circuits of CM.

5. Overall dimensions of ISM are given in "Appendix 2. Overall Drawings".

6. Up to an installation altitude of 1000 m above sea level. Above 1000m, the external insulation measurement of the ISM must be increased by the atmospheric correction factor Ka according to IEC 62271-1 compared to the insulation measurement at sea level. The maximum allowed altitude is 2000 m above sea level.

7. At 5 min short-term duty. Continuous current – 5 A.

8. Gold-plated auxiliary contacts are availbale on request. Contact your nearest sales representatives.

9. In case of Dry contacts "Close" and "Trip" are open.

10. At Cos j >0.66.

11. At Cos j >0.33.

1.3 Disclaimers

Tavrida Electric will not accept any claims for damages caused by improper transport, storage as well as unpacking. Transport damage must be reported in writing to the supplier as soon as it is discovered.

The User Guide contains information necessary for the installation, commissioning and operation. It is absolutely necessary for the proper use of the Vacuum Circuit Breakers to read the User Guide carefully before starting and to adhere to the instructions and the relevant regulations. Tavrida Electric will not accept any claims for damages caused by improper usage of the Vacuum Circuit Breakers. In case of special configurations please contact Tavrida Electric prior of usage of the Vacuum Circuit Breakers.

1.4 Precautions

- Check whether the installation position (distances, spatial separation, and the surroundings) is suitable for the switching devices.
- Installation, operation and maintenance shall only be carried out by trained and experienced personnel who are familiar with the equipment and the electrical safety requirements.
- During installation, commissioning, operation and maintenance of the equipment the relevant legal regulations (such as DIN/VDE/IEC), accident prevention regulations and the connecting conditions of the electric utilities shall be followed.
- Take note that during operation of the Vacuum Circuit Breakers certain parts are subject to dangerous voltage. Mechanical parts, also remote-controlled, can move quickly. Failure to comply may result in death, severe personal injury or damage to equipment.
- Pay attention to the hazard statements located throughout the User Guide.
- The operating conditions of the Vacuum Circuit Breakers shall comply with the technical data specified in the User Guide.
- Personnel installing, operating and maintaining the equipment shall be familiar with the User Guide and its contents.

1.5 Warranty

Unless otherwise stated in the contract, the warranty period is stated in Standard warranty policy. If agreed to otherwise, the contract conditions apply. No warranty is given in the case of ...

- a) ... the warranty period having run out during the period of storage with the customer;
- b) ... the operating conditions, ambient conditions, transport and storage conditions have not been adhered to according to the application description or the Installation and Operating Instructions;
- c) ... an unauthorized manipulation of the device has been carried out, such as opening the housing or damaging the seal;
- d) ... the device has not been properly installed, such as incorrect connection of supply voltage of auxiliary circuits.

2. Nameplates and Seals

The Vacuum Circuit Breakers itself does not have nameplates or seals but main components (ISM, CM and manual generators) it is comprised of have them.

2.1 ISM Nameplates and Seals

Each ISM has the following plate and labels:

- Label
- Serial number plate
- Seals

- 1. Manufacturer
- 2. Rated voltage Ur
- 3. Rated power frequency withstand voltage Vd
- 4. Rated impulse withstand voltage Up
- 5. Applicable standards
- 6. ISM designation
- 7. Rated duration of short circuit tk

- 9. Rated normal current Ir
- 10. Phase center distance p
- 11. Weight W
- 12. Year of manufacturing
- 13. Rated operating sequence

The serial number plate contains information about ISM type and serial number.

The label contains brief information about ISM technical parameters.

There are warranty seal labels on each side of the ISM metal frame.

Figure 2 Serial number plate placement

Figure 3 Warranty seal Label, serial number plate and seal arrangement is shown below.

a) ISM15_LD (except LD_8) and ISM25_LD labeling

b) ISM15_LD_8 labeling

c) ISM15_Shell, ISM25_Shell labeling

d) ISM15_MD labeling

- 1. Label
- 2. Serial number plate
- 3. Seal

Figure 5
Serial number plate and label arrangement

2.2 CM Nameplates and Seals

Each CM has the following labels:

- Serial number label
- Label with applicable ISM designation
- Warning label
- Firmware version label
- Information label with terminals connections and main parameters
- Seals

Figure 4 Serial number label

Figure 6 Label with applicable ISM designation

Before energizing this unit read the instruction carefully.

Malfunctions caused by failure to adhere to the instructions, will not be considered as non-conformities.

Figure 7 *Warning label* 12.1.2

Figure 8 Firmware version label

Figure 10 CM labels arrangement

- 1. Serial number label
- 2. Label with applicable ISM designation
- 3. Warning label
- 4. Warranty seal
- 5. Firmware version label
- 6. Information label with terminals connections and main parameters

2.3 Manual Generator Nameplates

Each manual generator has the following labels:

- Designation label
- Serial number label

Designation label

3. Product Handling

3.1 Transportation

The VCBs are transported in the original packing only. Any kind of transport and combinations thereof are applicable. Transportation shall be provided in waterproof compartments. If air transport is used all products shall be transported inside heated, pressurized compartments. The packed goods shall be handled in accordance with the handling symbols. Loading procedures for VCB packaging shall be carried out only with use of fork lifts, hoists or cranes. If possible the packaged VCB shall be placed on a pallet. During transportation the VCB must not be subjected to sharp impacts or dropped.

3.2 Storage

If immediate installation is not possible, the VCB shall be stored in the original packing under the following conditions:

- the ISM is switched off;
- desiccant must be placed in the packaging;
- storage must be dry, well ventilated and the room temperature should be between 25°C and + 55°C.

Average humidity measured over 1 year period shall not exceed 75% at 50°C. If several VCBs are stacked a maximum of two vertical layers are permitted.

In case the storage term exceeds one year from the production date it is recommended to perform the procedure of CM's electrolytic capacitor conditioning:

- apply power to the CM for 20 seconds;
- switch off the power supply and wait for 60 seconds;
- repeat the above actions 2 times;
- apply power to the CM continuously for 8 hours.

This procedure shall be performed annually during storage of the CM.

3.3 Unpacking and Inspection

3.3.1 VCB Unpacking and Check

Before unpacking, check the carton for damage. Removal of the products from the original packaging must be carried out with care and in accordance with lifting procedures. Every VCB component shall be checked for completeness against the packing list included within the routine test certificate supplied with the CM and ISM. These shall also be verified against the BOM list on the VCB packing list for VCB components and kits. Unloading procedures for ISM shall be carried out only with use of hoists or cranes. Lifting gear must not be attached to the support insulators; methods of lifting the ISM out of the carton shown below and must be strictly followed.

Figure 13 Lifting of ISM15_LD_1, ISM15_LD_3, ISM15_LD_8, ISM25_LD_1, ISM25_LD_2, ISM15_LD_3

Figure 14
Lifting of ISM15_Shell_2, ISM25_Shell_2

Figure 15 Lifting of ISM15_HD_1

All items should be checked visually for:

- mechanical damage, scratches, discoloration, corrosion;
- damage to the seals Figure 3, Figure 4).

Any transport damage must be reported immediately to the carrier in writing. Damages shall be photographically documented.

3.3.2 VCB Packaging and Scope of Supply

The VCB are placed in cardboard boxes (Figure 18):

- handling symbols label for transport and storage of the delivery unit (Figure 16);
- labels for manufacturers and product information (Figure 19);
- label for logistics data (Figure 17).

Figure 19

The ISM shall have undamaged warranty seals (appearance of seal is shown in Figure 3, its placement on the ISM (there are two warranty seals on each side of the ISM metal frame) - in Figure 4). The ISM designation and serial number shall comply with data in the VCB packing list and the VCB routine test certificate (appearance of serial number plate is shown in Figure 2, its placement on ISM - in Figure 4).

3.3.3 CM Packaging and Scope of Supply

As part of the VCB the CM are delivered inside of the VCB package. If the CM are delivered as spare part of the VCB they are packed in cardboard boxes.

Figure 21 CM packaging labels

The CM shall have undamaged warranty seals (its placement on the CM is shown in Figure 10). The CM designation and serial number shall comply with data in the VCB packing list and the CM routine test certificate (appearance of the CM serial number label and designation label are shown in Figure 5 and Figure 6, their placement on the CM – in Figure 10).

Each CM is supplied with the following components:

a) CM

Figure 22 CM scope of supply

b) Screwdriver Unit_Screwdriver_1

c) Brackets Det_Holder_84

3.3.4 ISM Packaging and Scope of Supply

As part of the VCB the ISM are delivered inside of the VCB package. If the ISM are delivered as spare part of the VCB they are packed in cardboard boxes like the VCB.

Each ISM15_LD_1, LD_3, ISM25_LD1, LD_2, LD_3 is supplied with the following components:

Figure 23 ISM15_LD_1, ISM15_LD_3, ISM25_LD_1, ISM25_LD_2, ISM25_LD_3 scope of supply

ISM15_LD_8 has different supply options. Depending on the order ISM15_LD_8 can be supplied with 1 set or 2 sets of auxiliary switches boards (with 3NO + 3NC, 4NO + 4NC, 6NO + 6NC contacts) or without them. In addition, the optional position indicator can be included in the package.

Each ISM15_LD_8 is supplied with the following components:

a) ISM

c) Optional Auxiliary Board EA_ASboard_28 (with 3NO + 3NC or 4NO + 4NC or 6NO + 6NC contacts)

Figure 24 ISM15_LD_8 scope of supply

b) Screwdriver Unit_Screwdriver_1

d) Optional Position Indicator CBkit_PosInd_1(1000)

Each of ISM15_MD_1, ISM15_MD_3, ISM15_Shell_2, ISM15_HD_1 and ISM25_Shell_2 is supplied with the following components:

a) ISM

c) Auxiliary Board EA_ASboard_28

Figure 25
ISM15_MD_1 scope of supply

b) Screwdriver Unit_Screwdriver_1

d) Position Indicator CBkit_PosInd_1(1000)

a) ISM

c) Position Indicator CBkit_PosInd_1(1000)

Figure 26
ISM15_MD_3 scope of supply

b) Screwdriver Unit_Screwdriver_1

a) ISM

b) Screwdriver Unit_Screwdriver_1

c) Position Indicator CBkit_PosInd_1(1000)

Figure 27
ISM15_Shell_2 scope of supply

a) ISM

c) Auxiliary Board EA_ASboard_28

Figure 28 ISM15_HD_1 scope of supply

b) Screwdriver Unit_Screwdriver_1

d) Position Indicator CBkit_PosInd_1(1000)

a) ISM

c) Position Indicator CBkit_PosInd_1(1000)

Figure 29
ISM25_Shell_2 scope of supply

b) Screwdriver Unit_Screwdriver_1

d) Circuit Breaker Kit CBkit_Shell25_1

CBkit_Ins_3 Scope of Supply

24 kV variants of VCB25_LD1_16.F and VCB25_LD3_16.F include CBkit_Ins_3. As part of a VCB CBkit_Ins_3 is placed inside the VCB package. If the kit is delivered separately as a spare part of the VCB it is packed in a plastic bag.

The kit includes for each pole of the ISM:

Gasket Det_Gasket_38

Plastic Insulator Det_PlastIns_48

Rubber Insulator Det_RubberIns_19

Plastic Insulator Det_PlastIns_49

CBkit_Shell15_1 Scope of Supply

17.5 kV variants of VCB15_Shell15_16.F include CBkit_Shell15_1 for flat busbar connection to ISM terminals. As part of a VCB CBkit_Shell15 is placed inside the VCB package. If the kit is delivered separately as a spare part of the VCB it is packed in a plastic bag.

The kit CBkit_Shell15_1(205) for ISM15_Shell_2(150_L) and ISM15_Shell_2(210_L) includes:

- 1. Screw
- StandDet_Screw_DIN912(M16_100_Fe88-Zn) 2. Screw
- StandDet_Screw_DIN912(M16_110_Fe88-Zn)
- 3. Terminal CBdet_Terminal_1
- 4. Washer
- StandDet_Washer_DIN125-1A(17_Fe-Zn)
- 5. Washer CBcomp_Washer_1
- 6. Plastic insulation CBdet_PlastIns_2(205_50_L)
- 7. Plastic insulation CBdet_PlastIns_1(50)

Figure 31
CBkit_Shell15_1(205) scope of supply

The kit CBkit_Shell15_1(310) for ISM15_Shell_2(210_H) and ISM15_Shell_2(275_H) includes:

- 1. Screw
 - StandDet_Screw_DIN912(M16_100_Fe88-Zn)
- 2. Screw
- StandDet_Screw_DIN912(M16_110_Fe88-Zn)
- 3. Terminal CBdet_Terminal_1
- 4. Washer
 - StandDet_Washer_DIN125-1A(17_Fe-Zn)
- 5. Washer CBcomp_Washer_1
- 6. Plastic insulation CBdet_PlastIns_2(310_50_H)
- 7. Plastic insulation CBdet_PlastIns_1(50)

Two variants of bolts are included in CBkit_Shell15_1:

- StandDet_Screw_DIN912(M16_100_Fe88-Zn) for case of single busbar connection (10 mm thickness);
- StandDet_Screw_DIN912(M16_110_Fe88-Zn) for case of double busbar connection (20 mm thickness).

VCB15_LD6_16.RD includes the plastic parts kit CBkit_LD15_2 for LMT Retrofit Draw-out type VCB or CBkit_LD15_3 for AG16 Retrofit Draw-out type VCB. As part of a VCB CBkit_LD15_2 and CBkit_LD15_3 are placed inside the VCB package. If the kits are delivered separately as a spare part of the VCB it is packed in a plastic bag.

- 1. Indicator CBdet_Indicator_1
- 2. Rubber ring Det_RubberRing_7(68)
- 3. Plastic insulation CBdet_PlastIns_5
- 4. Plastic button CBdet_PlastBut_1
- 5. Plastic washer CBdet_PlastWasher_1
- 6. Plastic washer CBdet_PlastWasher_2
- 7. Lever CBunit_Lever_1
- 8. Guide CBdet_Guide_1

Figure 32 CBkit_LD15_2 scope of supply

- 1. Indicator CBdet_Indicator_1
- 2. Lever CBunit_Lever_1
- 3. Plastic insulation CBdet_PlastIns_4
- 4. Plastic insulation CBdet_PlastIns_3(1)
- 5. Plastic insulation CBdet_PlastIns_3(2)
- 6. Plastic insulation CBdet_PlastIns_3(3)
- 7. Rubber ring Det_RubberRing_12
- 8. Guide CBdet_Guide_1
- 9. Lever CBunit_Lever_1

Figure 33 CBkit_LD15_3 scope of supply

3.3.5 VCB Accessories Unpacking and Check

CBkit_Interlock_1 Packaging and Scope of Supply

CBkit_Interlock_1 can be used with the VCB15_LD1_16.F and VCB25_LD1_16.F as an interface for various manual trip / indication / lockout accessories. The kit is packed in a plastic bag.

The kit includes:

ISM15_LD_3 and ISM25_LD_3 are already equipped with the CBkit_Interlock_1 pre-installed.

CBkit_Ins_4 Scope of Supply

CBkit_Ins_4 provides the dielectric strength of busbars connection to the VCB15_MD1_16.F. The kit has components for one pole of ISM15_MD, so three such kits are necessary for one VCB15_MD1_16.F insulation and one – for VCB15_MD3_16.F. The kit is delivered separately and packed in a plastic bag.

The kit includes one variant of the following options depending on the parameter value:

Rubber insulator CBdet_RubberIns_2 (for bars 40x10 mm) - 2 pcs.

Figure 35 CBkit_Ins_4(1) scope of supply

Rubber insulator CBdet_RubberIns_3 (for bars 80x10 mm) - 2 pcs.

Figure 36 CBkit_Ins_4(2) scope of supply

CBkit_Shell25_1 Scope of Supply

VCB25_Shell15_16.F includes CBkit_Shell25_1 for flat busbar connection to ISM terminals.

As part of a VCB CBkit_Shell25 is placed inside the VCB package. If the kit is delivered separately as a spare part of the VCB it is packed in a cardboard box.

The kit CBkit_Shell25_1 includes:

- 1. Screw StandDet_Screw_DIN912 (M16_100_Fe88-Zn)
- 2. Screw StandDet_Screw_DIN912 (M16_110_Fe88-Zn)
- 3. Terminal CBunit_Terminal_4
- 4. Washer StandDet_Washer_DIN125-1A(17_Fe-Zn)
- 5. Washer CBcomp_Washer_1
- 6. Plastic insulation CBdet_PlastIns_19(50_U)
- 7. Plastic insulation CBdet_PlastIns_19(50_L)
- 8. TES_CBdet_RubberIns_9

Figure 37 CBkit_Shell25_1 scope of supply

CBmount_ISM15_1

To provide 95 kV BIL between ISM15_HD_1 main terminals and external frame, it is required to use the additional spacers. Spacers are included in the CBMount_ISM15_1 kit. The kit is delivered separately and packed in a plastic bag.

The kit includes:

Stud Det_Stud_66 - 12 pcs.

Figure 38
CBmount_ISM15_1 packing

CBkit_Interlock_8 can be used with the VCB15_Shell2_16.F only as an accessory. It is an interface for manual trip/ lockout accessories connection to the ISM. The kit is packed in a cardboard box.

Figure 39 CBkit_Interlock_8 packing

Figure 41 CBkit_Interlock_8 scope of supply

1.

2.

(1)
CBkit_Interlock_3 packaging and scope of supply

CBkit_Interlock_3 can be used with the VCB15_Shell2_16.F via CBkit_Interlock_8 installed on this ISM, with the VCB15_LD8_16.F, VCB15_MD1_16.F, VCB15_MD3_16.F, VCB15_HD1_16.F and VCB25_Shell2_16.F as an accessory for manual trip/lockout of the ISM by key switch. The kit is packed in a cardboard box.

Figure 43

The kit includes:

1.

2.

CBkit_Interlock_3 package labeling

- 1. Screw StandDet_Screw_DIN912(M10_20_Fe88-Zn)
- 2. Cable tie StandDet_CableTie_LS(4.6_150_40)
- 3. Stopper CBdet_Stopper_2
- 4. Interlock unit CBunit_Interlock_1(1)
- 5. Nut StandDet_Nut_DIN555(M5_Fe-Zn)
- 6. Washer StandDet_Washer_DIN127-A(5_Fe-Zn)
- 7. Washer StandDet_Washer_DIN125-1A(5.3_Fe-Zn)
- 8. Screw StandDet_Screw_DIN7985-Ph(M5_25_Fe48-Zn
- 9. Screw StandDet_Screw_DIN7504-K(4.8_19_Fe-Zn)

CBkit_Interlock_3 scope of supply

CBkit_Interlock_3 is used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2. In addition CBkit_Interlock_3 is used with the ISM15_Shell_2 via CBkit_Interlock_8 CBkit_Interlock_4 can be used with the VCB15_Shell2_16.F via CBkit_Interlock_8 installed on this ISM, with the VCB15_LD8_16.F, VCB15_MD1_16.F, VCB15_MD3_16.F, VCB15_HD1_16.F and VCB25_Shell2_16.F as an accessory for manual trip / lockout of the ISM by rotary switch. The kit is packed in a cardboard box.

CBkit_Interlock_4 package labeling

CBkit_Interlock_4 is used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2. In addition CBkit_Interlock_4 is used with the ISM15_Shell_2 via CBkit_Interlock_8

1.

2.

1.

2.

3.

5.

CBkit_Interlock_5 can be used with the VCB15_Shell2_16.F via CBkit_Interlock_8 installed on this ISM, with the VCB15_LD8_16.F VCB15_MD1_16.F, VCB15_MD3_16.F, VCB15_HD1_16.F and VCB25_Shell2_16.F as an accessory for manual trip of the ISM as a manual trip button. The kit is packed in a cardboard box.

CBkit_Interlock_5 is used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2. In addition CBkit_Interlock_5 is used with the ISM15_Shell_2 via CBkit_Interlock_8.

CBunit_ ManGen_1 and CBunit_ ManGen_2 Packaging and Scope of Delivery

CBunit_ManGen is used to charge the CM_16_1 in cases where the main auxiliary power supply is not available. It is packed in a cardboard box.

Figure 51

CBunit_ ManGen_1 and CBunit_ ManGen_2 packing

(((())))

CBunit_ ManGen_1 and CBunit_ ManGen_2 scope of supply

Figure 53

2.

CBkit_PosInd_1(1000) Packaging and Scope of Supply

CBkit_PosInd_1(1000) is used to indicate the ISM main circuit position. VCB15_MD1_16.F, VCB15_ MD3_16.F, VCB15_Shell2_16.F, VCB15_HD1_16.F, VCB25_Shell2_16.F and ISM15_Shell_2 already include CBkit_PosInd_1(1000). In case of separate delivery the position indicator is packed in a plastic bag.

Figure 54
CBkit_PosInd_1(1000) scope of supply

CBcomp_RelCable_3 Packaging and Scope of Supply

CBcomp_RelCable_3 is a flexible trip and lock cable used for connection of ISM manual trip or interlock connection to the ISM. The cable is packed in a plastic bag.

Figure 55 CBcomp_RelCable_1 scope of supply CBmount_CM_1 is used to mount CM_16_1 on a DIN rail.

It is packed in a cardboard box.

Figure 56
CBmount_CM_1 packaging

- 1. Manufacturer
- 2. Type of device
- 3. Product name
- 4. Product code

Figure 57

CBmount_CM_1 package labeling

Figure 58
CBmount_CM_1 delivery set

- 1. Holder CBunit_Holder_15
- 2. Washer StandDet_Washer_DIN127-A(4_Fe-Zn)
- 3. Screw StandDet_Screw_DIN7985 Ph(M4_12_Fe48 Zn)
- 4. Washer StandDet_Washer_DIN125-1A(4.3_Fe-Zn)
- 5. Screw StandDet_Screw_ISO7046-Ph(M4_6_Fe48-Zn)
- 6. Holder StandComp_Holder_DIN(1)

3.4 Handling

To avoid equipment damage follow the handling recommendations listed below:

- 1. handling in accordance with pictorial symbols;
- elimination of drops from any heights; 2.
- 3. elimination of any mechanical impacts which can cause damage of the package;
- 4. the boxes are to be stowed to ensure complete tightness. The boxes should be hitched and lashed tightly so that it could not shift inside of a container under any conditions of carriage;
- 5. the modules shall be tied up with 16 mm polyester band twice. Top edges of the boxes shall be protected with plastic corners. The boxes can be additionally wrapped with stretch film.

4. Installation

4.1 Primary Part

4.1.1 Preparation

The following regulations must be adhered to during installation, commissioning and operation:

- IEC 62271-1//DIN VDE 0101, General specification for high-voltage switchgear and control gear standards;
- VDE 0105, Operation of electrical installations;
- DIN VDE 0141, Earthing systems for electrical power installations with nominal voltages above 1 kV;
- All rules for accident prevention applicable in the respective countries.

Wearing of gloves for handling the parts during installation is recommended. Insulating material surfaces must be cleaned with clean and dry rags. The contact surfaces of connections must be cleaned before installation. If the contacts have become oxidized during transport or storage then the following actions must be followed:

- Clean contact surfaces with a rough, dry cloth;
- In case of hard oxidation, clean with a hard plastic sponge, the coating layer must not be removed;

The nuts, washers and conical spring washers shall be used for connecting the terminals of the ISM with the busbars.

If additional fastening material is required, steel bolts according to EN ISO 898 class 8.8 (yield point 800 N/mm²), nuts according to EN ISO 890 class 8 (yield point 880 N/mm²), washers to DIN 125, conical spring washers to DIN 6796 (for ISM15_LD_1, LD_3, LD_6, LD_8 and ISM25_LD_1, LD_2, LD_3) and high load conical spring washers (#431540 in Schnorr catalogue - for ISM15_MD and #431560 in Schnorr catalogue - for ISM15_HD) shall be used. Bolts and washers for ISM15_Shell_2 and ISM25_Shell_2 connection are already included in the CBkit_Shell15_1 and CBkit_Shell25_1 kits kit. ISM mounting and shall be made with a calibrated torque wrench only.

4.1.2 Installation of the ISM

Mounting

In any switchgear application, the ISM15_Shell and, ISM15_HD and ISM25_Shell may be installed in position "actuator up", as well "actuator down" (Figure 59 - Figure 63). The ISM15_LD, ISM15_MD and ISM25_LD can be installed in any position (Figure 64).

Additionally ISM15_Shell_2(150_L) and ISM15_Shell_2(210_L) can be installed in horizontal actuator position. In this case the plane of all ISM terminals surfaces shall be horizontal as well and terminals surfaces shall be up oriented.

Figure 59

Fixed compact installation of ISM15_Shell_2, vertical arrangement, actuator up

Figure 61 Withdrawable unit with ISM15_LD8, vertical arrangement, actuator down

Figure 63 Withdrawable unit with ISM25_Shell2, vertical arrangement, actuator down

Figure 62 Withdrawable unit with ISM15_HD_1, vertical arrangement, actuator down

Figure 64 Withdrawable unit with ISM15_MD_1, tilted arrangement

Busbars and cables shall be connected with the ISM primary terminals mechanically in a stress-free manner. No pressure, tension or torsion forces shall act on the ISM. To avoid unacceptable high mechanical loads on the ISM, the busbar connections shall be supported by additional insulators (Figure 65).

Calibrated torque wrenches shall be used for mounting of switching modules and the connection of busbars. Points shown below should be used for mounting the ISM.

ISM15_LD Mounting

- 1. Required mounting points
- 2. Optional mounting points
- 3. Each two mounting points are required, either 3A+3B or 3A+3C

Figure 65

ISM15_LD (except ISM15_LD_8) and ISM25_LD mounting points

1 - mandatory mounting points;

3 - additional mounting points (required in case uncontrolled horizontal force will be applied to ISM terminals, ex. draw-out unit).

Figure 67
ISM15_LD_8 mounting points

Bolt sizes and torques for ISM15_LD_8

Important: It is not allowed to perform any close or trip operation for ISM LD series while the nut M10 on the stud of the ISM upper terminal (Figure 66 and Figure 68) is not tightened.

ISM15_MD Mounting

 Eight threads on both sides of the frame for obligatory ISM fixing (M10, torque is 25±3 Nm).

Figure 69
ISM15_MD_1, ISM15_MD_3 mounting points

ISM15_Shell Mounting

- Nine internal threads for obligatory ISM fixing which are formed in the module support insulator (M12, torque 40±4 Nm).
- Eight threads on both sides of the frame for optional ISM fixing (M8, torque is 10±1 Nm).

Figure 70
ISM15_Shell_2 mounting points

Ensure that the frame to which the ISM will be fixed does not create static load to the switching module.

ISM15_HD Mounting

- Twelve internal threads for obligatory ISM fixing which are formed in the module support insulator (M12, torque 40±4 Nm).
- Eight threads on both sides of the frame for optional ISM fixing (M10, torque is 25±3 Nm).

Figure 71
ISM15_HD_1 mounting points

To provide 95 kV BIL between ISM15_HD_1 main terminals and external frame, it is required to use the additional spacers. Spacers are included in the CBMount_ISM15_1 kit.

Figure 72
ISM15_HD_1 mounting with help of spacers from CBmount_ISM15_1

ISM25_Shell Mounting

- Nine internal threads for obligatory ISM fixing which are formed in the module support insulator (M12, torque 30±3 Nm).
- Four threads on both sides of the frame for optional ISM fixing (M10, torque is 25±3 Nm).

Figure 73
ISM25_Shell_2 mounting points

ISM25_Shell_2 for 125 kV BIL installation extension studs are included in the ISM delivery set:

Figure 74
ISM25_Shell_2 mounting with help of studs

4.1.3 Main Terminal Connections of ISM15_LD_1, ISM15_LD_3, ISM15_LD_6, ISM15_LD_8, ISM25_LD_1, ISM25_LD_2, ISM25_LD_3

Primary Terminals Connection

Busbars can be connected to terminals of ISM LD series by means of M10 screws. M10 bolts and nuts fixing busbars to ISM LD series terminals should be tightened with a torque of 30 ± 3 Nm. To connect busbars to lower terminal of ISM15_LD_1(90) M8 bolt should be used with a torque of 10 ± 1 Nm.

To prevent static load to the ISM poles it is not allowed to fasten busbars to the ISM terminal if there is a gap of more than one millimeter between the busbar and the ISM terminal just before this fastening. Bars shall be accurately prepared to avoid bending and (or) twisting forces to terminals when these bars are fastened.

Electrodynamic Forces Clearances

To avoid unacceptable high electrodynamic impact on the ISM, additional support insulators are required if the unsupported busbars are longer than specified in the Table 3.

Table 3 - Additional Support In	ulators Installation Minimum Distances

	Short-Circuit Current		
ISM	16 kA	20 kA	
	L1, mm		
ISM15_LD series	980	700	
ISM25_LD series	980	NA	

Electromagnetic Clearances

Short-circuit current magnetic field influences the ISM magnetic actuator. To avoid unwanted tripping, the minimum clearances between busbars and the ISM frame should be not less than 120 mm (Figure 75).

Figure 75 Electromagnetic clearances

Insulation Clearances

The recommended minimum phase-to-phase and phase-to-ground air clearances are stated in Table 4. Shorter clearances shall be verified by a voltage test.

Table 4 - Insulation Clearances

Power frequency rated voltage	Impulse test vol-tage (BIL)	Minimum clearance (b) for LD ISM
12 kV	75 kV	120 mm
17.5 kV	95 kV	140 mm (160 mm for ISM15_LD_8)
24 kV	125 kV	220 mm

Coordination of Minimum Clearances

Based on electromagnetic influence (a) and rated insulation voltage (b), the greater clearance should be selected.

Figure 77 *Clearance coordination*

Measures for Complying with the Rated Insulation Level

Insulation Cap Set CBkit_Ins_3 for ISM25_LD

To comply with the rated impulse withstand voltage of 125 kV according to IEC 62271-1 it is recommended to cover the top terminals of the ISM25_LD_1 and ISM25_LD_3 with insulation cap set CBkit_Ins_3. The arrangement is shown in Figure 78.

Figure 78 CBkit_Ins_3 installation

If the insulation cap set CBkit_Ins_3 will not be used the compliance with the rated insulation level shall be verified by a voltage test.

Busbar for 24 kV ISM

If the PCD of the ISM25_LD_1 is 210 mm, the connected busbars shall have the shape as shown in Figure 79.

If external busbars have rectangular cross-section, additional insulation barriers between poles shall be used if air clearance between busbars is less than 190 mm.

4.1.4 Main Terminal Connections of ISM15_MD_1, ISM15_MD_3, ISM15_Shell_2, ISM15_HD_1, ISM25_Shell_2

Primary Terminals Connection

To comply with the rated impulse withstand voltage according to IEC 62271-1 it is recommended to use:

1. for ISM15_MD_1 or ISM15_MD_3:

PCD, mm	BIL, kV	Busbars	Insulation Kit
150	75	40x10 mm	Not required CBkit_Ins_4(1)
150	95	40x10 mm	
210	75	40x10 mm 80x10 mm	Not required
210	95	40x10 mm 80x10 mm	CBkit_Ins_4(1) CBkit_Ins_4(2)

Note: Selection of single or double bars 40x10 mm depends on the rated normal current of VCB application. It is recommended to use additional busbar insulation (for example, shrinkable tube) to provide 95 kV BIL with 150 mm PCD circuit breaker.

Figure 80 Edges of bars 40x10 mm at the place to ISM terminal connection

Figure 81 Edges of bars 80x10 mm at the place to ISM terminal connection

M12 bolts fixing busbars (or contact arms) to ISM15_MD_1 or ISM15_MD_3 terminals should be tightened with a torque of 50±2 Nm.

- 2. for ISM15_Shell_2 CBkit_Shell15_1 for 95 kV BIL (75 kV BIL for PCD 150 mm).
- 3. for ISM15_HD_1 busbars with width no more than 100 mm (selection of single or double bars depends on the rated normal current of VCB application). For BIL 95 kV and PCD 210 mm the bars shall have radius at least 3 mm on their edges and shall be insulated (for example, by shrinkable tube).

Table 5 - Insulation of ISM15 MD 1 Main Terminals

4. for ISM25_Shell_2 – CBkit_Shell25_1 for 125 kV BIL. For BIL 125 kV the bars shall be insulated (for example, by shrinkable tube).

Figure 83 Edges of bars 100x10 mm at the place to ISM terminal connection

If insulation kit will not be used compliance with the rated insulation level shall be verified by a voltage test. M16 bolts fixing busbars (or contact arms) to ISM15_Shell_2, ISM15_HD_1 and ISM25_Shell_2 terminals should be tightened with a torque of 60±2 Nm.

To prevent static load on the ISM poles it is not allowed to fasten busbars to the ISM terminal if there is a gap of more than one millimeter between the busbar and the ISM terminal just before this fastening. Bars shall be accurately prepared to avoid bending and (or) twisting forces to terminals when these bars are fastened. ISM15_MD

Figure 84

Details of ISM15_MD terminals connection to rectangular cross-shaped busbars (at fixed installation, for example)

Figure 85

Details of ISM15_MD terminals connection to rectangular cross-shaped busbars with help of CBkit_Ins_4(1) (at fixed installation, for example)

Figure 86

Details of ISM15_MD terminals connection to rectangular cross-shaped busbars with help of CBkit_Ins_4(2) (at fixed installation, for example)

ISM15_Shell

The gap between the busbar and the ISM terminal just before this fastening should be not more than one millimeter.

a) Details of ISM15_Shell_2 terminals connection to rectangular cross-shaped busbars (at fixed installation, for example)

 b) Details of ISM15_Shell_2 terminals connection to cylindrical cross-shaped busbars (withdrawable unit contact arm, for example)

c) Details of ISM15_Shell_2 terminals connection to rectangular cross-shaped busbars with help of CBkit_Shell15_1 (at fixed installation, for example)

Figure 87 Busbar fixation to ISM15_Shell_2 terminal

Details of ISM15_HD_1 terminals connection to rectangular cross-shaped busbars (at fixed installation, for example)

Figure 89

Details of ISM15_HD_1 terminals connection to single rectangular cross-shaped busbars (at fixed installation, for example)

Figure 90

Details of ISM15_HD_1 terminals connection to double rectangular cross-shaped busbars (at fixed installation, for example)

Details of ISM25_Shell_2 terminals connection to rectangular crossshaped busbars with help of CBkit_Shell25_1 (at fixed installation,for example)

Figure 91 Busbar fixation to ISM25_Shell_2 terminal

Electrodynamic Forces Clearances

To avoid unacceptable high electrodynamic impact on the ISM, additional support insulators are required if the unsupported busbars are longer than specified in the Table 6

Figure 92
ISM support insulators installation distance

	Short-Circuit Current			
ISM	20 kA	25 kA	31.5 kA	
	L1, mm			
ISM15_MD_1(150_L)	700	450	300	
ISM15_MD_1(210_L)	980	630	420	
ISM15_MD_3 1)	930	600	400	
ISM15_MD_3 2)	1100	820	500	
ISM15_Shell_2(150_L)	700	450	300	
ISM15_Shell_2(210_L)	980	630	420	
ISM15_Shell_2(210_H)	980	630	420	
ISM15_Shell_2(275_H)	1200	820	550	
ISM15_HD_1(210)	1000	850	500	
ISM15_HD_1(275)	1000	1000	650	
ISM25_Shell_2(210)	980	630	-	
ISM25_Shell_2(275)	730	470	-	

Table 6 - Additional Support Insulators Installation Minimum Distances

1) In case ISM15_MD_3 is installed close to the other ISM15_MD_3. 2) In case ISM15_MD_3 is installed separately from other ISM15_MD_3.

Electromagnetic Clearances

To avoid primary current effect on ISM actuator, the minimum clearance between busbars and the ISM frame (Figure 93) should be no less than stated in the Table 7.

Figure 93 Electromagnetic clearances

Table 7 - Electromagnetic Clearances

Short Circuit Current	Minimum Clearance (L2)	Applicable for
	100 mm	ISM15_MD_1
	100 mm	ISM15_MD_3
≤20 kA	120 mm	ISM15_Shell_2, ISM15_HD_1
	120 mm	ISM15_HD_1
	190 mm	ISM25_Shell_2
	120 mm	ISM15_MD_1
	120 mm	ISM15_MD_3
25 kA	150 mm	ISM15_Shell_2
	190 mm ¹⁾	ISM15_HD_1
	240 mm	ISM25_Shell_2
	150 mm	ISM15_MD_1
	150 mm	ISM15_MD_3
51.5 KA	190 mm	ISM15_Shell_2
	240 mm ¹⁾	ISM15_HD_1

1) Smaller clearance on request.

Electromagnetic Clearances

The recommended minimum phase-to-phase and phase-to-ground air clearances are stated in Table 8. Shorter distances shall be verified by a voltage test.

Table 8 - Insulation Clearances

Power Frequency Rated Voltage	Impulse Test Voltage (BIL)	Minimum Clearance (L2)
12 kV	75 kV	120 mm
17.5 kV	95 kV	140 mm

Figure 94 ISM15_MD insulation clearances - 75 kV BIL

Figure 95 ISM15_MD insulation clearances - 95 kV BIL

ISM15_Shell

Figure 96 ISM15_Shell_2 with low upper terminal insulation clearances

Figure 97 ISM15_Shell_2 with high upper terminal insulation clearances

ISM15_HD

Figure 98
ISM15_HD_1 insulation clearances

ISM25_Shell

Coordination of Minimum Clearances

Based on electromagnetic influence and rated insulation voltage, the largest value clearance should be selected.

4.1.5 ISM15_LD_1, LD_3, LD_6, ISM25_LD_1, LD_2, LD_3 Interlocks

The ISM15_LD1, ISM15_LD6, ISM25_LD1, ISM25_LD2 provide the following interfaces for interlocking (Figure 101):

- stub shafts at both sides with grooves and tapped holes Figure 101, details 1 and 3);
- two interlocking pins with tapped holes (Figure 101, detail 2).

Interlocking interface of ISM15_LD_1, ISM25_LD_1, LD_2

A = 19,5...50 mm; B = 22...50 mm; the length of A, B depends on the particular installation.

Figure 101

Example of connection between interlocking lever and synchronizing shaft

The Following Conditions Must Be Fulfilled When Designing Mechanical Interlocking:

- If the interlocking mechanism is attached to one of the interlocking pins, the weight of the directly attached • movable part to the interlocking pins shall not exceed 0.35 kg. If both interlocking pins are used, the sum of the attached weights shall not exceed 0.35 kg (Figure 102).
- If the attached part is joined with a lever mechanism, the weight (including directly moved parts) shall be • decreased in proportion of the lever (Figure 103).
- If the interlocking mechanism is directly attached with the synchronizing shaft the moment of inertia of the attached mechanism shall not exceed 4.3 x 10⁻⁴ kg*m². If both stub shafts of the synchronizing shaft are used, the sum of the attached moments of inertia shall not exceed 4.3 x 10⁻⁴ kg*m² respectively 1.2 x 10 4 kg*m² (Figure 101).
- For manual-emergency-tripping a force of up to 250 N may be applied to the interlocking pins. But no static force shall be applied (Figure 102).
- It is not allowed to perform electrical trip/close commands while the interlocking pins or the synchronizing shaft are blocked mechanically.

b)

Figure 102

Mechanical interlocking by interlocking pins

Figure 103

Direct connection of the interlocking mechanism to the synchronizing shaft

Single phase ISM15_LD_3 and ISM25_LD_3 are supplied with an installed interlocking lever:

- 1. Holder Det_Holder_22;
- 2. Bolt StandDet_Bolt_DIN933(M8_40_Fe88-Zn) bolt M8x40;
- 3. Holder Det_Holder_20;
- 4. Bolt StandDet_Bolt_DIN933(M6_20_Fe88-Zn) bolt M6x20.

Figure 104 Interlocking lever assembly design for single phase ISM

An interlocking lever can be installed on three phase ISM15_LD_1 and ISM25_LD_1, LD_2 as shown below.

a) Install CBdet_Shaft_1 on ISM synchronizing shaft output and fix with help of CBdet_Stopper_1 and StandDet_Bolt_DIN933(M8_40_Fe88-Zn)

b) Attach Det_Holder_20 to the Det_Holder_22 and fix with StandDet_Bolt_DIN933(M6_20_Fe88-Zn). Then install Det_Holder_22 on CBdet_Shaft_1

c) Fix Det_Holder_22 on the CBdet_Shaft_1 with StandDet_Bolt_DIN933(M6_20_Fe88-Zn)

Figure 105

Interlocking lever assembly design for three phase ISM

An electrical interlock can be provided by connecting the ISM actuator coil in series with the contacts of a position switch of the relevant device (disconnector or draw-out truck, etc.) as shown in the Figure 106.

Figure 106 Electrical interlock diagram

The position switch must be positively driven in both directions and must fully operate before the interlocked ISM starts to move to its alternative position. Resistor ,R' is used to prevent the CM alarm "Actuator Coil Isolated" while position switch PS is open.

Connection of CBkit_Interlock_3, _4, _5 to ISM15_LD_1, LD_3, LD_6, ISM25_LD_1, LD_2, LD_3 Interlocking Shaft:

CBkit_Interlock_LD(0_0_1) can be used with the ISM15_LD series as an accessory for manual trip / interlock and main contacts position indicator connection to the ISM.

The installation of the CBkit_Interlock_LD(0_0_1) is shown below. Notes:

- CBkit_Interlock_LD(0_0_1) is used to provide the connection of interlocking interface and position indicator.
- One of the 3 interlocks can be connected to CBkit_Interlock_LD(0_0_1) (CBkit_Interlock_3, CBkit_Interlock_4 or CBkit_Interlock_5). Also the CBkit_Interlock_LD(0_0_1) can be used without any of the interlocks but only with the position indicator installed.
- Position indicator can be attached to CBkit_Interlock_LD(0_0_1) as an optional item.

CBkit_Interlock_LD(0_0_1) can be installed either on the left or the right side of the circuit breaker. Depending on the side interlock installation have slight differences, see the figures below.

First, install the flexible release and interlocking cables to the interface.

Then install the TES_CBdet_Guide_2 on the position indicator cable.

Figure 109 Position indicator installation

Assemble the CBkit_Interlock_LD(0_0_1) as shown below.

Figure 110 CBkit_Interlock_LD(0_0_1) installation

Install the plate on the ISM.

Attach the CBkit_Interlock_LD(0_0_1) to the ISM.

CBkit_Interlock_LD(0_0_1) installed on the ISM is shown below.

CBkit_Interlock_LD(0_0_1) installed on the ISM is shown below.

All the components that are used are presented below:

4.1.6 LD_8, MD_1, MD_3, SHELL_2, HD_1 Interlocks

Interlocking Mechanism

Each of LD_8, MD_1, MD_3, SHELL_2, HD_1 is equipped with an interlocking shaft that can be rotated clockwise to the "unlatched" position or counter-clockwise to the "open and locked" position. In the "unlatched" position the ISM can perform "close" and "open" operations.

In the "open and locked" position the ISM the interlocking shaft prevents the actuator mechanically from closing. In addition the actuator coils are disconnected from the CM.

If the ISM is closed, rotation of the interlocking shaft from "unlatched" to "open and locked" position leads to manual tripping. The CM indicates alarm "Manual Trip".

The interlocking shaft of ISM15_Shell is fixed in the "open and locked" position. To return it in the "unlatched" position the opposite direction force shall be applied to the shaft as shown in the Figure 117. The interlocking shafts of LD_8, MD_1, MD_3, HD_1 are not fixed in the "open and locked" position since these ISMs have shaft return spring that returns them back to the "unlatched" position. To leave their shafts in the "open and locked" position the Figure 117.

Figure 115
ISM15_LD_8 interlocking shaft

ISM15_Shell interlocking shaft

ISM15_HD, ISM15_MD and ISM25_Shell interlocking shafts

Figure 116

ISM15_Shell_2, ISM15_HD_1, ISM15_MD_1, ISM25_Shell interlocking shafts

Open, locked

Figure 117 Interlocking shaft positions

a) Interlocking shaft in unlatched position. ISM is open

b) Interlocking shaft in unlatched position. ISM is closed

c) Initial state. ISM is closed. Turn interlocking shaft counterclockwise to "open and locked" position (manual tripping)

d) Interlocking shaft in "open and locked" position. ISM is open

e) Initial state: ISM is open and locked. Turn interlocking shaft clockwise to unlatched position

Figure 118
ISM15_Shell_2 interlock operating principle

Unlocked

Mechanical interlocking of ISM15_LD_8 ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 can be performed by remote interlocking unit. It connects with switching module via release cable. Follow the instructions below to install it:

- 1. Unscrew two captive screws 1 as shown in the
- 2. Figure 119;
- 3. Take off the plastic cover 2;
- 4. Install release cable 3 in cam 4 as show below;
- 5. Put the plastic cover back and tighten two screws 1.

Figure 119

Release cable connection to the interlocking shaft of ISM15_LD_8, MD_1, MD_3, HD_1 and ISM25_Shell_2

Interlocking shaft of ISM15_LD_8, MD_1, MD_3, HD_1 and ISM25_Shell_2 operation by release cable

The release cable operating stroke is 37±0,5 mm, which is equal 90 degrees rotation angle of cam as shown in the Figure 117. Minimal bend radius for cable is 100 mm.

There is a possibility to install two remote interlocks which can operate independently of each other.

For ISM15_LD_8, MD_1, MD_3, HD_1 interlocking shaft torque is as follows:

ISM15_MD or ISM15_HD interlocking shaft torque

The interlocking process might be divided into next steps:

- "a-b" backlash;
- "b-c" blocker contacts the magnetic actuator plate;
- "c-d" blocker interacts the magnetic actuator plate;
- "d-e" switching module turns off;
- "e-f" switching module turns to "open and locked" position (point "f");
- "f-a" turning switching module to "unlatched" position (point "a").
- "g-h" -- electrical interlock action.

•

The allowed deviations are indicated by hatching.

For ISM15_Shell_2 interlocking shaft torque is as follows:

When ISM15_Shell_2 is closed and interlocking shaft is counterclockwise rotated:

Figure 122 ISM15_Shell_2 interlocking shaft torque when ISM is closed

When ISM15_Shell_2 is open and interlocking shaft is rotated from the "open and locked" to "unlatched" position and vice versa:

Figure 123
ISM15_Shell_2 interlocking shaft torque when ISM is open

For ISM25_Shell_2 interlocking shaft torque is as follows:

Figure 124
ISM25_Shell interlocking shaft torque

The interlocking process might be divided into next steps:

- "a-b" backlash;
- "b-c" electrical interlock zone;
- "d-e" mechanical trip zone

The allowed deviations are indicated by hatching.

Torque on the Interlocking Shaft for ISM Manual Trip

The torque on the interlocking shaft for ISM manual trip shall be:

- for ISM15_LD_8, MD_1, MD_3 and ISM15_HD_1 no more than 3.5 N*m;
- for ISM15_Shell_2 no more than 4 N*m.

Load Capacity of ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1, ISM25_Shell_2 Interlocking Shaft

• The angle of the interlocking shaft rotation shall not exceed 90 °.

Exceeding any of the above limitations can lead to damage of the interlocking mechanism.

Connection of CBkit_Interlock_8 to ISM15_Shell_2 Interlocking Shaft

CBkit_Interlock_8 can be used with the ISM15_Shell_2 as an accessory for next manual trip / interlock connection to the ISM.

The installation of the CBkit_Interlock_8 is shown below (Figure 125). The ISM15_Shell_2 shall be in unlatched position.

Notes:

- It is recommended to install ISM in the Switchgear and connect its auxiliary circuits prior interlock connection • to simplify the connection and adjustment process;
- If the flexible release cable passes through the switchgear segregations according to the design solution it is • recommended to pass it through these segregations prior interlock connection;
- As CBkit_Interlock_8 is used for the next connection of manual trip unit or interlock the connection of cable • CBcomp_RelCable_3 is shown as well.

Figure 125 Flexible release cable connection to CBunit_Interlock_3

Figure 126 Remove the four screws that fix the central part of plastic cover of ISM

The removed screws shall not be used later for CBkit_Interlock_2 connection to the ISM.

Install CBdet_Holder_14 on the ISM with help of StandDet_Screw_DIN7982(4.2_25_Fe-Zn) from the delivery kit of CBkit_Interlock_2; (see Figure 127).

Install CBunit_Interlock_3 on the CBdet_Holder_14 with help of StandDet_Screw_DIN7985-Ph(M4_8_Fe48-Zn) and StandDet_Washer_DIN127-A(4_Fe-Zn) from the delivery kit of CBkit_Interlock_2 (see Figure 127).

Installation of CBunit_Interlock_3 with connected flexible release cable on the ISM. Connection of CBkit_Interlock_3 to CBkit_Interlock_8 is shown for instance.

Connection of CBkit_Interlock_3 to ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1, ISM25_Shell_2 Interlocking Shaft

CBkit_Interlock_3 can be used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 as an accessory for manual trip / lockout of the ISM by key switch. CBkit_Interlock_3 can be used also with the ISM15_Shell_2 via CBkit_Interlock_8

The connection of the CBkit_Interlock_3 to the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3 and , ISM15_HD_1 and ISM25_Shell_2 interlocking shaft is shown below. (Figure 128 – Figure 129). The ISM shall be in Unlatched position.

Notes:

- the bending radius of the flexible release cable shall be not less than 100 mm;
- it is recommended to install ISM in the Switchgear and connect its auxiliary circuits prior interlock connection to simplify the connection and adjustment process;
- if the flexible release cable passes through the Switchgear segregations according to the design solution it is recommended to pass it through these segregations prior interlock connection.

- 1. Unscrew two captive screws 1;
- 2. Take off the plastic cover 2;
- 3. Install release cable 3 in cam 4;
- 4. Put the plastic cover back and tighten two screws 1.

Figure 128

Connection of release cable to the ISM interlocking shaft

Installation and adjustment of CBkit_Interlock_3 in the Switchgear is shown in the Figure 130– Figure 137.

Install CBdet_Stopper_2 on the CBunit_Interlock_1(1) with help of StandDet_Screw_DIN912(M10_20_Fe88-Zn) from the delivery kit of CBkit_Interlock_3. The orientation of CBdet_Stopper_2 depends on the way of next installation of CBunit_Interlock_1(1). During fixation of StandDet_Screw_DIN912(M10_20_Fe88-Zn) the rod of CBunit_Interlock_1(1) shall not be loaded by torque, the wrench shall be used for rod unloading.

Figure 130
Installation of CBdet_Stopper_2 on the CBunit_Interlock_1(1)

Adjustment of CBunit_Interlock_1(1) installation for variant with one or with two straddling disconnectors

Figure 133 Installation of CBunit_Interlock_1(1) for variant with two disconnectors

Adjustment of CBunit_Interlock_1(1) installation for variant with two disconnectors

Figure 135 Fixation of CBunit_Interlock_1(1)

CBunit_Interlock_1(1) shall be fixed with help of:

- StandDet_Screw_DIN7985-Ph(M5_25_Fe48-Zn);
- StandDet_Washer_DIN125-1A(5.3_Fe-Zn);
- StandDet_Washer_DIN127-A(5_Fe-Zn);
- StandDet_Nut_DIN555(M5_Fe-Zn)

from the delivery kit of CBkit_Interlock_3. Alternatively StandDet_Screw_DIN7504-K(4.8_19_Fe-Zn) from the delivery kit of CBkit_Interlock_3 can be used.

The flexible release cable shall be fixed in the Switchgear with help of StandDet_CableTie_LS(4.6_150_40) from the delivery kit of CBkit_Interlock_3. If necessary the stroke of flexible release cable can be adjusted as shown in the Figure 136.

Figure 136 *Adjustment of stroke of flexible release cable*

Figure 137
Position of interlocking shaft of the ISM with connected CBkit_Interlock_3

Connection of CBkit_Interlock_4 to ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1, ISM25_Shell_2 interlocking shaft

CBkit_Interlock_4 can be used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 as an accessory for manual trip / lockout of the ISM by rotary switch. CBkit_Interlock_4 can be used with the ISM15_Shell_2 via CBkit_Interlock_8.

The connection of the CBkit_Interlock_4 to the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 interlocking shaft is shown in the Figure 138 and Figure 139. The ISM shall be in Unlatched position.

Notes:

- the bending radius of the flexible release cable shall be not less than 100 mm;
- it is recommended to install ISM in the Switchgear and connect its auxiliary circuits prior interlock connection to simplify the connection and adjustment process;
- if the flexible release cable passes through the Switchgear segregations according to the design solution it is recommended to pass it through these segregations prior interlock connection.

Figure 139 CBkit_Interlock_4 mounting on the Switchgear door

Adjustment of CBkit_Interlock_3 in the Switchgear is shown in the Figure 136.

Connection of CBkit_Interlock_5 to ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1, ISM25 Shell 2 interlocking shaft

CBkit_Interlock_5 can be used with the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 as an accessory for manual trip of the ISM as a manual trip button. CBkit_Interlock_5 can be used with the ISM15_Shell_2 via CBkit_Interlock_8.

The connection of the CBkit_Interlock_5 to the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 interlocking shaft is shown in the Figure 136 and Figure 140. The ISM shall be in Unlatched position.

Notes:

- the bending radius of the flexible release cable shall be not less than 100 mm; •
- it is recommended to install ISM in the Switchgear and connect its auxiliary circuits prior interlock connection • to simplify the connection and adjustment process;
- if the flexible release cable passes through the Switchgear segregations according to the design solution it is ٠ recommended to pass it through these segregations prior interlock connection.

Figure 140 Unscrew the self-tapping screws of the transparent cover and remove it

4.1.7 Installation of ISM15_LD_8, MD_1, MD_3, Shell_2, HD_1, ISM25_Shell_2 Main Contacts Position Indicator

The installation of the main contacts position indicator is shown below. (Figure 141 - Figure 146). The ISM shall be in the Closed position.

Notes:

• the bending radius of the flexible indication cable shall be not less than 40 mm.

There are two possibilities (left, right) to connect the flexible indication cable

Figure 141 Connection of CBkit_PosInd_1(1000) to the ISM

Figure 142

88

Drop the boss of the wire horizontally into the slot. Insert the end of the sheath into the V-shape spring contact

Figure 143 Return the cover and fasten it to the ISM

Figure 144 Adjust the indicator for both closed and opened states of the switching module

Figure 145 Position indicator shows that main contacts are open

Figure 146 Position indicator shows that main contacts are closed

4.1.8 Installation of Insulation kit CBkit_Ins_4

CBkit_Ins_4 can be used with the ISM15_MD as an accessory to comply with the rated impulse withstand voltage of 95 kV according to IEC 62271-1. The installation of the CBkit_Ins_4 is shown in the Figure 147 and Figure 148.

b) connect busbar to the ISM terminal

c) screw the bolt M12 with torque 50±2 H*m

Cutting line

a) put insulator CBdet_ RubberIns_2 on the busbar

d) cover the ISM terminal tightly by put insulator CBdet_RubberIns_2

e) insulation of double bars 40x10 mm connection is the same, insulator CBdet_RubberIns_2 shall be cut to fit with double bars

Figure 147 Installation of CBkit_Ins_4(1) in case of busbars 40x10 mm usage

a) cover the bar by shrinkable tube in case it is required

b) put insulator CBdet_RubberIns_3 on the busbar

c) screw the bolt M12 with torque 50 ± 2 H*m and cover the ISM terminal tightly by put insulator CBdet_RubberIns_3

Figure 148 Installation of CBkit_Ins_4(2) in case of busbars 80x10 mm usage

4.1.9 Protective Earthing

For personnel protection the metal housing of the ISM must be connected according to the applicable regulations, such as IEC 62271-1, IEC 62271-100, IEC 62271-200 via the marked earth screw of the ISM to the earthing arrangement of the particular panel. The earthing connection can be carried out with a cable or a fat copper bar. The area around the earth screw shall be cleaned before providing the earth connection. After the occurrence of a short circuit, the proper condition of the protective earthing must be checked.

Fault current (1 s)	Maximum temperature	Cross section of earth connection
16 kA	300 °C	55 - 95 mm²
20 kA	300 °C	70 - 120 mm²
25 kA	300 °C	95 - 140 mm²
31.5 kA	300 °C	120 - 190 mm²

Table 9 - Reference Values for Cross Sections of Earth Connections (copper)

ISM protective earthing connection

The method of ISM15_LD_1, LD_6, and ISM25_LD_1, LD_2, earthing is shown in the Figure 151, method of ISM15_LD_8 earthing is shown in the Figure 150.

Figure 150 ISM15_LD_8 earthing

Figure 151 ISM15_LD1, LD_6, ISM25_LD_1, LD_2 earthing

Figure 152 ISM15_MD_1 earthing

Figure 153
ISM15_Shell_2 and ISM25_Shell_2 earthing

Figure 154
ISM15_HD_1 earthing

An example of one side copper bar earthing is represented in Figure 155.

Figure 155
Example of earthing the ISM15_Shell_2 by copper busbar

4.2 Secondary Part

4.2.1 Three-Phase ISM Secondary Connections

All three-phase ISM15_LD_1, ISM15_LD_6, ISM15_Shell_2, ISM25_LD_1 and ISM25_LD_2 have secondary connectors as shown below.

Figure 156

Terminal arrangement of the three-phase ISM15_LD_1, ISM15_LD_6, ISM15_Shell_2, ISM25_LD_1 and ISM25_LD_2

X	T1	X	Г2
Terminal No.	Connection	Terminal No.	Connection
1	Auxiliary switch S 1 (1)	15	Auxiliary switch S 13 (AS1)
2	Auxiliary switch S 1 (4)	16	Auxiliary switch S 13 (AS2)
3	Auxiliary switch S 2 (1)	17	Auxiliary switch S 7 (1)
4	Auxiliary switch S 2 (4)	18	Auxiliary switch S 7(2)
5	Auxiliary switch S 3 (1)	19	Auxiliary switch S 8 (1)
6	Auxiliary switch S 3 (4)	20	Auxiliary switch S 8 (2)
7	Auxiliary switch S 4 (1)	21	Auxiliary switch S 9 (1)
8	Auxiliary switch S 4 (4)	22	Auxiliary switch S 9 (2)
9	Auxiliary switch S 5 (1)	23	Auxiliary switch S 10 (1)
10	Auxiliary switch S 5 (4)	24	Auxiliary switch S 10 (2)
11	Auxiliary switch S 6 (1)	25	Auxiliary switch S 11 (1)
12	Auxiliary switch S 6 (4)	26	Auxiliary switch S 11 (2)
13	Actuator coil (SC1)	27	Auxiliary switch S 12 (1)
14	Actuator coil (SC2)	28	Auxiliary switch S 12 (2)

Table 10 - Three-Phase ISM15_LD, ISM15_Shell and ISM25_LD Terminal Arrangement

ISM15_LD_8, ISM15_MD_1, ISM15_HD_1 and ISM25_Shell_2 have secondary connectors as shown below.

b) Auxiliary switches board EA_Asboard_28 (XT2, XT3)

Figure 157 Terminal arrangement of the ISM15_LD_8, ISM15_MD_1, ISM15_HD_1 and ISM25_Shell_2

Each of the ISM15_MD_1, ISM15_HD_1 and ISM25_Shell_2 has two auxiliary switches boards EA_Asboard_28.

Note: Depending on the order ISM15_LD_8 can be supplied with or without auxiliary switches board (auxiliary switches boards can be ordered separately). Following auxiliary switches boards are available: auxiliary board with 3NO + 3NC, 4NO + 4NC, 6NO + 6NC contacts.

XT1		XT2, XT3 (Auxiliary switches board EA_Asboard_28)	
Terminal No.	Connection	Terminal No.	Connection
1	Actuator coil (SC1)	1	NC auxiliary switch S 1(1)
2	Actuator coil (SC2)	2	NC auxiliary switch S 1(1)
		3	NC auxiliary switch S 2(1)
		4	NC auxiliary switch S 2(1)
		5	NC auxiliary switch S 3(1)
		6	NC auxiliary switch S 3(1)
		7	NO auxiliary switch S 4(1)
		8	NO auxiliary switch S 4(1)
		9	NO auxiliary switch S 5(1)
		10	NO auxiliary switch S 5(1)
		11	NO auxiliary switch S 6(1)
		12	NO auxiliary switch S 6(1)

Table 11 - ISM15_LD_8, MD_1 and ISM15_HD_1 Terminal Arrangement

4.2.2 Single-Phase ISM Secondary Connections

Single-phase ISM15_LD_3 and ISM25_LD_3 have secondary connectors as shown below.

Figure 158
Terminal arrangement of the single-phase ISM15_LD_3 and ISM25_LD_3

XT1			
Terminal No.	Connection		
1	Auxiliary switch SF1 (AS1)		
2	Auxiliary switch SF1 (AS2)		
3	Auxiliary switch SF2		
4	Auxiliary switch SF2		
5	Auxiliary switch SF3		
6	Auxiliary switch SF3		
7	Auxiliary switch SF4		
8	Auxiliary switch SF4		
9	Auxiliary switch SF5		
10	Auxiliary switch SF5		
11	Actuator coil (SC1)		
12	Actuator coil (SC2)		

Table 12 - Single-Phase ISM15_LD_3 and ISM25_LD_3 Terminal Arrangement

Single-phase ISM15_MD_3 has secondary connectors as shown below.

Figure 159
Terminal arrangement of the single-phase ISM15_MD 3

Table 13 - Single-Phase ISM15_MD_3 Terminal Arrangement

XT1		
Terminal No.	Connection	
1	Auxiliary switch AS1 (AS1.1)	
2	Auxiliary switch AS1 (AS1.2)	
3	Auxiliary switch AS2 (AS2.1)	
4	Auxiliary switch AS2 (AS2.2)	
5	Auxiliary switch AS3 (AS3.1)	
6	Auxiliary switch AS3 (AS3.2)	
7	Auxiliary switch AS4 (AS4.1)	
8	Auxiliary switch AS4 (AS4.2)	
9	Actuator coil (SC1)	
10	Actuator coil (SC2) with internal interlock	
11	Actuator coil (SC3) without interlock	

Note: Actuator coil input CS3 is intended for case when internal interlock is not required. For instance, when three single-phase ISM15_MD_3 are connected in parallel to one control module. In such case the interlock of one of these ISMs can be used. Please contact the nearest Tavrida Electric sales representative for case when three single-phase ISM15_MD_3 are connected in parallel to one control module for more information.

4.2.3 CM Secondary Connections

CM_16_1 has secondary connectors as shown below.

Figure 160 Terminal arrangement of the CM

XT1		XT2	
Terminal No.	Connection	Terminal No.	Connection
1	Power supply input (+)	1	Actuator coil output
2	Power supply input (-)	2	Actuator coil output
3	Relay output 1 NO		
4	Relay output 1 Com		
5	Relay output 1 NC		
6	Relay output 2 NO		
7	Relay output 2 Com		
8	Relay output 2 NC		
9	Relay output 3 NO		
10	Relay output 3 Com		
11	Relay output 3 NC		
12	Close dry input		
13	Close dry input		
14	Trip dry input		
15	Trip dry input		

Table 14 - CM Terminal Arrangement

CM relay functionality:

- Relay 1 "ISM main contact position" relay;
- Relay 2 "Ready" relay;
- Relay 3 "Malfunction or Loss of auxiliary supply" relay.

Relay "ISM main contact position" keeps its state (1 NO and 1 NC contacts with common point) after CM power supply disconnection.

USB port of CM is not used under service conditions (only for CM programming during production).

Relays functionality and number of relays with same functionality can be changed on request. Please contact the nearest Tavrida Electric sales representative for more information.

4.2.4 Installation of the CM

The installation of the CM is carried out according to the panel design either on the draw out unit or in the low voltage compartment of the switchboard. It must be separated from the high voltage compartment.

- 1. CM holders
- 2. Slots for CM mounting (by M4 screws)

Figure 161 Provisions for CM_16 installation

With help of the CBmount_CM_1 the CM can be mounted on a DIN rail in the low voltage compartment of a Switchgear. There are two variants of the CM installation available.

Variants of the CM installation on the DIN rail

The CM can operate in any mounting position. Care must be taken for good access and visibility of the terminals, LEDs.

Figure 163 Installation to CM terminals

Wires are connected to the CM terminals by using a screwdriver (Figure 22). The terminals can accept solid and stranded wire within the range 0.5-2.5 mm. The insulation stripping length shall be 6-10 mm. Insulated auxiliary circuits shall provide 2 kV power frequency dielectric strength.

4.2.5 Installation of Secondary Cables Between ISM and CM

Before connection CM to ISM the compliance between ISM type (shown on ISM serial number plate – Figure 2) and CM (applicability of CM for particular type of ISM are shown on CM designation label – Figure 4 and CM packing label - Figure 21) shall be confirmed.

Warning! If the CM label does not show the correct ISM type connection shall not be established. It can lead to damage of the ISM. Contact your nearest Tavrida Electric partner for replacement.

Secondary cables between ISM and CM shall be installed according to the following instructions (Figure 164 – Figure 167). To achieve best possible protection against electromagnetic influences. The earthing point 3 🕞 shall be as close as possible to the CM. Unshielded parts of wires shall be not longer than 10 cm. Connections between the end of cable shields and ISM earthing points shall be not longer than 5 cm.

Figure 164
Secondary cables between ISM15_Shell_2 and CM

Secondary cables between ISM15_LD_8 or ISM15_MD_1 or ISM15_HD_1 or ISM25_Shell_2 and CM

Figure 166

Secondary cables between three phases ISM15_LD_1, LD_6 or ISM25_LD_1, ISM25_LD_2 and CM

Figure 167

Secondary cables between single phase ISM15_LD_3 or ISM25_LD_3 ISM and CM

Figure 168
Secondary cables between ISM15_MD_3 and CM

Even after the CM is disconnected from all the power supplies there still may be hazardous voltage on the CM connectors. Achievement of safe voltage level is indicated by the extinction of all LEDs on the CM front panel. This may take up to 15 minutes after the CM is deenergized.

a) LD ISM

b) ISM15_Shell_2

Figure 169 Sample of earthed cable shielding on ISM side

4.2.6 Auxiliary Supply

Connection of CM_16_1 to power supply is shown below.

Type of MCB shall be selected according to CM consumption data given in Table 1.

If the CM is connected to DC voltage, pay special attention to the correct polarity for CM_16_1(Par1_60.1_Par2_Par3_Par4_Par5).

If Manual generators CBunit_ManGen are used for charging the CM, DC voltage outputs shall be connected to power supply inputs of CM_16_1.

Arrangement of output wires of Manual generators CBunit_ManGen_1 and CBunit_ManGen_2:

- red colour wire positive polarity output wire; •
- black colour wire negative polarity output wire; •
- yellow-green colour wire manual generator earthing wire.

4.2.7 CM Indication

The CM has the following LED indication functionality:

- CM "Power" indication;
- CM "Ready" state indication;
- CM "Malfunction" state indication.

The placement of LED indicators are shown in Figure 161. The LED indicators are visible from two directions.

Figure 171 CM_16 LED indicators

The self-diagnostic system inside the CM detects possible malfunctions and reports them via the Malfunction LED blink signals and Malfunction or Loss of auxiliary supply Relay state. The explanation of the LED blink codes is given in Table 15.

CM State	Type of Indication	Indication		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LED Power	LED Ready	LED Malfunction
Power supply voltage is absent more than 3 minutes	Warning and Loss of auxiliary supply	off	off	off
"Close" operation is preparing	Normal	continuous	off	off
CM is ready and operable	Normal	continuous	continuous	off
Power supply voltage is absent for more than 1.5 seconds	Warning and Loss of auxiliary supply	off	continuous	1 blink
Excessive trip or close time	Malfunction	continuous	off	2 blinks
Actuator coil isolated	Malfunction	continuous	off	3 blinks
Short circuit of Actuator coil	Malfunction	continuous	off	4 blinks
Manual Trip and Lock	Warning	continuous	off	5 blinks
Out of temperature range	Warning	continuous	off	6 blinks
ISM state is open without command from the CM	Malfunction	continuous	off	7 blinks
Internal fault of the CM	Malfunction	continuous	off	continuous

 Table 15 - CM Self-Diagnostic Indication

Notes.

- 1. Number of blinks in series followed by 1.5 s intervals, continuous light or off state are shown for LED indicators.
- 2. Period of checking Actuator Coil state (short circuit / isolated) 10 s.

Priority of the fault indication starting from the lowest one:

1. CM is out of temperature range;

- 2. ISM state is open without command from the CM;
- 3. Excessive trip or close time;
- 4. Manual Trip and Lock;
- 5. Actuator coil isolated;
- 6. Short circuit of Actuator coil;
- 7. Power supply voltage is absent more than 1.5 seconds.

4.2.8 CM Relay Contacts Operation

Relay contacts of CM_16_1 change their state as described below.

Table 16 - CM Relay "Ready" Contacts Operation

CM State	Relay "Ready" contacts state		
	NC (terminals 7-8 by default)	NO (terminals 6-7 by default)	
CM is ready for close or open operation	Open	Closed	
CM is not ready for close or open operation	Closed	Open	

Table 17 - CM Relay "ISM Main Contact Position" Contacts Operation

ISM State	Relay "ISM main contact position" contacts state		
	NC (terminals 4-5 by default) NO (terminals 3-4 by def		
ISM is closed	Open	Closed	
ISM is open	Closed	Open	

CM performs the checkup of ISM main contacts position and updates the "'ISM main contacts position" relay status in the following cases:

- In case Close command was applied from the CM. In this case the update is performed not later than in 150 ms after ISM main contacts closing;
- In case Trip command was applied from the CM. In this case the update is performed not later than in 70 ms after ISM main contacts opening;
- Periodically every 10 s in case no Close or Open command was applied from the CM.

In case application project requires to define main contacts position faster than the timing mentioned above it is recommended to use auxiliary switches installed at the ISM. Position indication of ISM provided by CM can be incorrect, in case CM is not operable due to absence of auxiliary supply.

CM State	Relay "Malfunction or Loss of Auxiliary Supply" Contacts State		
chi state	NC	NO	
Power supply voltage is absent for more than 1.5 seconds (1 blink of LED Malfunction)	Open	Closed	
Excessive trip or close time (2 blinks of LED Malfunction)	Open	Closed	
Actuator coil isolated (3 blinks of LED Malfunction)	Open	Closed	
Short circuit of Actuator coil (4 blinks of LED Malfunction)	Open	Closed	
Manual Trip and Lock (5 blinks of LED Malfunction)	Closed	Open	
Out of temperature range (6 blinks of LED Malfunction)	Closed	Open	
ISM state is open without command from the CM (7 blinks of LED Malfunction)	Open	Closed	
Internal fault of CM (continuous light of LED Malfunction)	Open	Closed	

 Table 18 - CM Relay "Malfunction or Loss of Auxiliary Supply" Contacts Operation

5. Commissioning

The list of commissioning operations and checks is shown in Table 19 below. Initial state of VCB components before checks: ISM - open, CM - deenergized. Main circuits of ISM shall be disconnected/isolated from the main circuits of substation to avoid high voltage being applied to the ISM before the commissioning procedure completion. Commissioning and maintenance is only permitted for qualified and trained personnel.

Operation description	Required tool	Approximate timing	
Tests at the end of installation			
Check for damage, remove any dirt, contamination or moisture	Visual check, no tool is required	2 minutes	
Unsupported busbar length shall be according to Table 3 for LD ISM and Table 6 for HD ISM	Ruler, tape measure or calliper - depends on distance value and place of measurement execution	2 minutes	
Fixing points shall be according to Figure 65 - Figure 74	Visual check, no tool is required	1 minute	
Bolts and torques shall be according to Figure 65 - Figure 74	Torque wrench according to torque value	2 minutes	
Clearances shall be according to subchapters 4.1.3 and 4.1.4	Ruler, tape measure or calliper - depends on distance value and place of measurement execution	2 minutes	
Protective earthing shall be according to subchapter 4.1.9	Visual check, no tool is required	1 minute	
Check that free air circulation at ISM is possible	Visual check, no tool is required	1 minute	
Installation of CM shall be according to subchapter 4.2.4	Visual check, no tool is required	1 minute	
Availability of the CM auxiliary power supply. It is recommended to use the same auxiliary power supply as for protection and control devices. Type of voltage and voltage level according to selected CM type	Voltmeter with measurement range according to expected power supply voltage value	2 minutes	
Polarity of auxiliary power supply and selection of MCB shall be according to subchapter 4.2.6. Check of compliance between ISM type on ISM serial number plate and on CM designation label	DC voltmeter with measurement range according to expected power supply voltage value - for voltage polarity check. Visual check, no tool is required – for MCB check	2 minutes	
Connection between CM and ISM shall be according to subchapter 4.2.5	Multimeter - for validation of correct wiring connections (utilizing the continuity function of the meter)	5 minutes	
Checking that all secondary connections have been secured adequately	Visual and mechanical check of connections, no tool is required	2 minutes	
Checking whether the CM, ISM are connected according to project/ product documentation and according to circuit diagrams in "Appendix 3.Secondary schemes".	Multimeter - for validation of correct wiring connections (utilizing the continuity function of the meter)	5 minutes	

Table 19 - List of Commissioning Operations and Check-Ups
Operation description	Required tool	Approximate timing
	Operation check	
 Turn on the CM auxiliary power supply then check the following: The "Power" LED must light up immediately; The "Ready" LED must light up continuously within 15 s after switching on; The "Malfunction" LED must not light up; The "Ready" relay contact must close within 15 s.; The "Malfunction or Loss of auxiliary supply" relay contact must change its state1); The "ISM main contact position" relay contact must not change its state; ISM main contacts must not change their state (ISM shall remain open). 	Visual check, no tool is required	1 minute
 Apply close command to the CM then check the following: The "Power" LED must light continuously; The "Ready" LED must light continuously; The "Malfunction" LED must not light up; The "Ready" relay contact must not change its state; The "Malfunction or Loss of auxiliary supply" relay contact must not change its state; The "ISM main contact position" relay contact must change its state; ISM main contacts must change their state (ISM shall be closed). 	Visual check, no tool is required	1 minute
 Apply trip command to the CM then check the following: The "Power" LED must light continuously; The "Ready" LED must light continuously; The "Malfunction" LED must not light up; The "Ready" relay contact must not change its state; The "Malfunction of Loss of auxiliary supply" relay contact must not change its state; The "ISM main contact position" relay contact must change its state; ISM main contacts must change their state (ISM shall be open). 	Visual check, no tool is required	1 minute

Table 19 - L	ist of	Commissioning	Operations	and	Check-Ups
--------------	--------	---------------	------------	-----	------------------

1) "As earlier, after CM power supply disconnection this relay indicated the CM state: "Power supply voltage is absent for more than 1.5 seconds"

Operation description	Required tool	Approximate timing
 Do not remove trip command and apply close command to the CM then check the following: The "Power" LED must light continuously; The "Ready" LED must light continuously; The "Malfunction" LED must not light up; The "Ready" relay contact must not change its state; The "Malfunction or Loss of auxiliary supply" relay contact must not change its state; The "ISM main contact position" relay contact must not change its state; ISM main contacts must not change their state (ISM shall remain open). 	Visual check, no tool is required	1 minute
 Remove close and trip commands to the CM then check the following: The "Power" LED must light continuously; The "Ready" LED must light continuously; The "Malfunction" LED must not light up; The "Ready" relay contact must not change its state; The "Malfunction or Loss of auxiliary supply" relay contact must not change its state; The "ISM main contact position" relay must not change its state; ISM main contacts must not change their state (ISM shall remain open). 	Visual check, no tool is required	1 minute
 Apply and keep close command and then apply trip command to the CM then check the following: The "Power" LED must light continuously; The "Ready" LED must go out after the trip of the ISM and then light up continuously within 10 s.; The "Malfunction" LED must not light up; The "Ready" relay contact must change its state after the trip of the ISM and then change its state again within 10 s.; The "Malfunction or Loss of auxiliary supply" relay contact must not change its state; The "ISM main contact position" relay contact must change its state each time when ISM is closed and open. 	Visual check, no tool is required	1 minute

able 10 List 40 . 4.5

Operation description Required tool		Approximate timing	
Primary circuits insulation check ¹⁾			
Observe safety precautions listed in the danger and warning advisories. Construct proper barriers and warning light systems	Equipment to provide safety in the test area 10 minut		
Ground each pole of ISM that is not under test $^{\scriptscriptstyle 2)}$	Wires	2 minutes	
Apply slowly rising 100% ³⁾ of test voltage ⁴⁾ (50 or 60 Hz) across each pole for one minute ⁵⁾ . (ISM is open)	Power frequency withstand voltage test set	2 minutes	
If the pole sustains the test voltage for that period, its vacuum integrity has been verifed ⁶⁾	Power frequency withstand voltage test set	-	
Repeat actions above to check each pole of ISM	Power frequency withstand voltage test set, wires	8 minutes	
Close the ISM. Ground each pole of ISM that is not under test ²⁾	Wires	1 minute	
Apply slowly rising 100% ³⁾ of test voltage ³⁾ (50 or 60 Hz) between a primary conductor of the pole and ground for one minute, repeat test for each pole of ISM	Power frequency withstand voltage test set	12 minutes	
If no disruptive discharge occurs, the insulation system is satisfactory	Power frequency withstand voltage test set	-	
After the test, ground all main circuit terminals to dissipate any static charge	Wires	2 minutes	
Auxiliary circuits insulation check			
Connect all points of the secondary circuits with a shorting wire. ISM coil connection wires must be disconnected from connector X3 of CM before the test	Wires	5 minutes	
Connect the shorting wire to the high potential lead of the high voltage tester and ground the circuit breaker housing. Starting with zero volts, gradually increase the test voltage to 1500 V RMS, 50 or 60 Hz. Maintain test voltage for one minute	Power frequency withstand voltage test set	3 minutes	
If no disruptive discharge occurs, the secondary circuits insulation level is satisfactory	Power frequency withstand voltage test set	-	
Disconnect the shorting wire and re-attach the wires to connector X3 of CM	Visual check, no tool is required	5 minutes	

Table 19 - List of Commissioning Operations and Check-Ups

- This test includes not only the vacuum interrupter test, but also the other insulation components tested in parallel with the interrupter. These include the standoff insulators and the insulated drive links, as well as the insulating (tension) struts between the upper and lower vacuum interrupter supports. If these insulation components are contaminated or defective, the test voltage will not be sustained. If so, clean or replace the affected components, and retest.
- 2) Three phase ISM should be tested phase by phase only. Therefore poles not under the test should be grounded.
- 3) For test of separate VCB 100% level of test voltage, for test of Switchgear with installed VCB 80% level of test voltage according to IEC 62271-200.
- 4) Rated test voltage levels (Ud) are given in Table 1.
- 5) To apply test voltage single-core short cables should be used. Application of high voltage coaxial cables is strictly prohibited. To coordinate the surge impedance between the test set and ISM extra resistor as shown in the Figure 172 shall be used.
- 6) During testing of vacuum interrupter, self-fading restrikes may appear. In case of restrikes, reduce the voltage slightly until the restrikes disappear (for 10-15 seconds) and then increase again.

Operation description	Required tool	Approximate timing
Primary circuits contact resistance check		
ISM shall be closed before the test, there should not be any external circuits connected to ISM main terminals that provide parallel circuit with the ISM main circuits otherwise tests will be invalid.	Visual check, no tool is required	1 minute
Test equipment shall be connected to ISM main circuits terminals according to Figure 163 in order exclude any additional contact resistance and to decrease measurement error. Main contact resistance shall be measured by appropriate equipment at test current not less than 50 A.	Resistance measurement test equipment with test current not less than 50 A	10 minutes
Measured values for VCB15_LD, VCB25_LD and VCB15_MD must not exceed limits specified in Table 1. Measured values for VCB15_Shell and VCB15_HD must not exceed limits specified in Table 1 increased on 2 µOhm. These 2 µOhm are added by contact resistance between ISM terminals and additional burs attached to them (see in the Figure 173)	Visual check, no tool is required	-

Table 19 - List of Commissioning Operations and Check-Ups

After above listed tests were performed successfully the VCB can be put into operation.

Figure 173 The connection points of the contact resistance meter

114 TAVRIDA ELECTRIC

6. Operation

6.1 Switching

6.1.1 Closing

To close the ISM main contacts the CM close command shall be applied. It is a "dry contact" input so no external voltage should be applied.

The Close command will be accepted if:

- CM state is "Ready" (Ready LED flashes green);
- no Trip command is applied;
- optional electrical interlock is unlocked;
- mechanical and electrical interlock is unlocked (in case of ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_ Shell_2 and ISM15_HD_1 only).

If Close command is applied and held before the CM is in a "Ready" state the Close command will not be accepted. If auxiliary power is not available, the manual generator CBunit_ManGen shall be used to charge the CM capacitors and to close the ISM. Mechanical closing is not possible.

CM_16 close and trip inputs

If Manual generators CBunit_ManGen are used to charge the CM, the Manual generator handle shall be rotated until the Ready LED of the CM flashes green (approximately 30 seconds). Then the ISM close command can be applied to the CM. One possible variant is the connection of NO and Common contacts of relay Ready to the Close command input of the CM. Be aware that in this case the ISM will be closed automatically once the CM reaches the Ready state.

Figure 175
CM_16 power supply connection

If Manual generators CBunit_ManGen are used for charging the CM, DC voltage outputs of the Manual generator shall be connected to the power supply inputs (Figure 175) of CM_16_1. Pay special attention to the correct polarity for CM_16_1(Par1_60.1_Par2_Par3_Par4_Par5).

6.1.2 Opening

To open the ISM main circuits, a trip command should be applied to the CM trip command input. It is a "dry contact" input so no external voltage should be applied. The trip command will be accepted if:

- CM state is "Ready" (Ready LED flashes green) or within 60 seconds after the removal of the auxiliary power supply;
- optional electrical interlock is unlocked;
- mechanical and electrical interlock is unlocked (in case of ISM15_MD_1, ISM15_MD_3, ISM15_Shell_2 and ISM15_HD_1 only) If the trip command is applied and kept before the CM is in a "Ready" state, the trip command will not be accepted.

6.1.3 Emergency Opening

The ISM can also be opened manually. When the synchronizing shaft is rotated, a force exceeding the magnetic attraction forces of the ring magnet is applied to the armature, which subsequently starts to move. As the air gap increases, the opening springs and the contact pressure springs overcome the magnetic holding force, and the vacuum interrupter opens.

To open the ISM15_LD_1, LD_3, LD_6 and ISM25_LD1, LD_2, LD_3 manually, the force shall be applied to the interlocking pins or torque shall be applied to the stub shaft evenly during their movement - see Figure 176. Force shall be applied along the pin's movement axis and directed to the ISM frame. The torque shall be applied in the direction of shaft rotation during ISM opening. The force or torque influence shall not be applied at the end of pin's stroke or shaft rotati¬on and shall not be applied to the pin or shaft before ISM closing.

To open the ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_Shell_2 and ISM15_HD_1 manually, the torque shall be applied to the interlocking shaft evenly during its movement - see Figure 177. The torque shall be applied counterclockwise of shaft rotation (90 degrees angle). The torque shall not be applied at the end of shaft rotation. ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_Shell_2 and ISM15_HD_1 have a built in electrical interlock that interrupts the ISM coil circuit after the interlocking shaft is rotated counterclockwise. After manual trip, the shaft should be rotated clockwise to unlock the ISM.

Figure 177 ISM15_Shell_2 manual trip execution (ISM15_LD_8, ISM15_MD_1, ISM15_MD_3, ISM15_HD_1 and ISM25_Shell_2 have same manual trip execution)

7. Maintenance and troubleshooting

7.1 Primary Circuits

Under normal operating conditions (see Table 1) the ISM is maintenance free for a period of at least 30 years or until it has reached the permissible number of operating cycles.

However when maintenance is carried out on the switchgear then the commissioning tests should be repeated. Check that the ISM is disconnected from all voltage sources before inspecting its insulating parts. Test results should be treated as given in Table 20.

Operation description	Required tool	Approximate timing
Check for damage, remove any dirt, contamination or moisture	Dry napless cloth or a napless cloth soaked in alcohol to clean the insulation	5 minutes
Bolts and torques shall be according to Figure 65 - Figure 74	Torque wrench according to torque value	2 minutes
Protective earthing shall be according to subchapter 4.1.9	Wrench if required	1 minute
ISM c	peration check	
Perform close and open operation of the ISM. Modules shall be operable. Otherwise, check the control circuit. If necessary, change the failed module	Visual check, no tool is required	1 minute
Primary circ	uits insulation check ¹⁾	
Observe safety precautions listed in the danger and warning advisories. Construct the proper barrier and warning light system	Equipment to provide safety in test area	10 minutes
Ground each pole not under test Wires		2 minutes
Apply slowly rising 100% ²⁾ of test voltage ³⁾ (50 or 60 Hz) across each pole for one minute ⁴⁾ . (ISM is open)	Power frequency withstand voltage test set	2 minutes
If the pole sustains the test voltage for that period, its vacuum integrity has been verifed ⁵⁾	Power frequency withstand voltage test set	-
Repeat actions above to check each pole of the ISM	Power frequency withstand voltage test set, wires	8 minutes
Close the ISM. Ground each pole not under test	Wires	1 minute
Apply slowly rising 80% of test voltage ²⁾ (50 or 60 Hz) between a primary conductor of the pole and ground for one minute, repeat test for each pole of ISM	Power frequency withstand voltage test set	12 minutes
If no disruptive discharge occurs, the insulation system is satisfactory	Power frequency withstand voltage test set	-
After the test, ground all main circuit terminals to dissipate any static charge	Wires	2 minutes

Table 20 - List of Tests and Check-Ups of ISM During Maintenance

1) This test includes not only the vacuum interrupter test, but also the other insulation components tested in parallel with the interrupter. These include the support insulators and the insulated drive links, as well as the insulating (tension) struts between the upper and lower vacuum interrupter supports. If these insulation components are contaminated or defective, the test voltage will not be sustained. If so, clean or replace the affected components, and retest.

- 2) For test of separate VCB 100% level of test voltage, for test of Switchgear with installed VCB 80% level of test voltage according to IEC 62271-200.
- 3) Rated test voltage levels (Ud) are given in Table 1 above.
- 4) To apply test voltage the single-core short cables should be used. Application of high voltage coaxial cables is strictly prohibited. To coordinate the surge impedance between the test set and ISM extra resistor as shown in Figure 172 shall be used.

5) During testing of vacuum interrupter, self-fading restrikes may appear. In case of restrikes, reduce the voltage slightly until the restrikes disappear (for 10-15 seconds) and then increase again.

Operation description	Required tool	Approximate timing		
Primary circuits	Primary circuits contact resistance check ¹⁾			
ISM shall be closed before the test, there should not be any external circuits connected to ISM main terminals that provide parallel circuit with the ISM main circuits otherwise tests will be invalid.	Visual check, no tool is required	1 minute		
Test equipment shall be connected to ISM main circuits terminals according to Figure 173 in order exclude any additional contact resistance and to decrease measurement error. Main contact resistance shall be measured by appropriate equipment at test cur¬rent not less than 50 A.	Resistance measurement test equipment with test current not less than 50 A	10 minutes		
Measured values for VCB15_LD, VCB25_LD and VCB15_MD must not exceed limits specified in Table 11) Measured values for VCB15_Shell and VCB15_HD must not exceed limits specified in Table 1 increased on 2 µOhm. These 2 µOhm are added by contact resistance between ISM terminals and additional burs attached to them (see in the Figure 173)	Visual check, no tool is required	-		

Table 20 - List of Tests and Check-Ups of ISM During Maintenance

1) If the Module has contact resistance which exceeds the specified limit but is less than twice this limit, continuation of use is possible, if actual continuous current does not exceed the following value:

$$Ia < Ir\sqrt{\frac{Rr}{Ra}}$$

where:

la, Ra — actual current and corresponding contact resistance,

Ir, Rr — rated values (Table 1).

If the contact resistance is at least twice as high as the specified limit, the ISM must be replaced.

Additionally switchboards can be subjected to extra tests that are specified in corresponding documentation for the switchboards.

7.2 Secondary Circuits

The CM is inherently maintenance free. However when maintenance is carried out on the switchgear then commissioning tests should be repeated. It is also recommended to conduct regular visual checks of the module housing and insulation of the wires connected to the CM. Test results should be treated as given in the Table 21.

Operation description	Required tool	Approximate timing	
Auxiliary circuits insulation check			
Connect all points of the secondary circuits with a shorting wire. ISM coil connection wires must be disconnected from connector X3 of the CM before the test	Wires	5 minutes	
Connect the shorting wire to the high potential lead of the high voltage tester and ground the circuit breaker housing. Start with zero volts, gradually increase the test voltage to 1500 V RMS, 50 or 60 Hz. Maintain test voltage for one minute	Power frequency withstand voltage test set	3 minutes	
If no disruptive discharge occurs, the secondary circuits insulation level is satisfactory	Power frequency withstand voltage test set	-	
Disconnect the shorting wire and reattach the wires to connector X3 of the CM	Visual check, no tool is required	5 minutes	

Table 21 - List of Tests and Check-Ups of CM During Maintenance

7.3 Troubleshooting

If during installation, commissioning, operation or maintenance any non-conformity occurs, contact your nearest Tavrida Electric sales representative. The contact data and web site links are listed at the end of this document. In case of a non-conformity any repairs are strictly prohibited without permission from the sales representative. To be sure that a non-conformity occurred, please perform the checks as mentioned in Table 22 prior to contacting our regional representative.

Failure description	Possible reason	Method of elimination
Appearance failure	Mechanical or arc damage, breach of service conditions	Replacement of failed component
Excessive contact resistance of ISM	ISM reached the permissible number of operating cycles or decreasing of insulation level in ISM vacuum interrupters	Replacement of ISM
ISM cannot pass power frequency voltage withstand test at 80 % of rated voltage	ISM vacuum interrupters or insulation damage	Replacement of ISM
ISM cannot perform close/trip	ISM is interlocked	Check ISM interlock state and its actuator coil connection with connector X3 of CM
operation	CM failure	Check CM LED states
	Mechanical damage of ISM	Replacement of ISM
1 blink of CM "Malfunction" LED	Absence of CM power supply	Check presence of CM power supply, its polarity and voltage level
2 blinks of CM "Malfunction" LED	ISM cannot be closed / tripped	Check the circuit of ISM actuator coil connection with connector X3 of CM, check state of ISM electrical interlocks
3 blinks of CM "Malfunction" LED	ISM actuator coil circuit is interrupted	Check the circuit of ISM actuator coil connection with connector X3 of CM, check state of ISM electrical interlocks
4 blinks of CM "Malfunction" LED	Short circuit of ISM actuator coil circuit	Check the circuit of ISM actuator coil connection with connector X3 of CM, check state of ISM electrical interlocks
5 blinks of CM "Malfunction" LED	Manual trip of ISM and ISM is electrically interlocked	Check the ISM and its interlock state
6 blinks of CM "Malfunction" LED	CM is out of the temperature range	Stop performing CO operations until the blinks stop if temperature is above the temperature range or move CM into environment with higher temperature if temperature is below the temperature range.
7 blinks of CM "Malfunction" LED	ISM state is open without command from the CM	Check the ISM and its interlock state
CM "Malfunction" LED lights continuously	Internal fault of CM	Replacement of CM
None of CM LEDs lights	Absence of CM power supply	Check presence of CM power supply, its polarity and voltage level
	Internal fault of CM	Replacement of CM

The ISM or CM removal and the installation of the new one should be performed according to chapter 4. The checks and tests after substitution are described in chapter 5.

124 TAVRIDA ELECTRIC

8. Disposal

All Tavrida Electric Vacuum Circuit Breakers and their components are manufactured from environmentally friendly materials, therefore no special waste disposal is required.

Appendix 1. VCB Package Dimensions and Weights

VCB package dimensions and weights

VCP	Package Dimensions,	Gross Weight,
VCB	not more than (LxWxH), mm	not more than, kg
VCB15_LD1_16.F	645x330x550	39.1
VCB15_LD3_16.F	645x290x550	17.1
VCB15_LD6_16.RD	470x410x700	62.3
VCB15_LD8_16.F	790x290x550	31,3
VCB15_MD1_16.F	760x315x490	41.5
VCB15_MD3_16.F	300x315x190	16.1
VCB15_Shell2_16.F	790x275x800	68.4
VCB15_HD1_16.F	830x330x680	79.5
VCB25_LD1_16.F	775x290x550	41.7
VCB25_LD2_16.F	645x330x550	40.1
VCB25_LD3_16.F	645x290x550	18.3
VCB25_Shell2_16.F	825x328x874	73 kg

Appendix 2. Overall Drawings

Dimensions of Indoor Switching Modules

ISM15_LD

ISM15_LD_1(80), two lower terminals (continuous busbar), PCD 150 mm Weight: 36 kg

 $L_{max} = 300 \text{ mm}$ $W_{max} = 440 \text{ mm}$ $H_{max} = 475 \text{ mm}$

ISM15_LD_8(150_1), PCD 150 mm Weight: 25 kg

 $L_{max} = 283.5 \text{ mm}$ $W_{max} = 440 \text{ mm}$ $H_{max} = 426 \text{ mm}$

ISM15_LD_8(210_1C), PCD 210 mm Weight: 26 kg

A (1:1) 3 places

ISM15_MD

ISM15_MD_1(210_L),	L _{max} = 279 mm
PCD 210 mm,	W _{max} = 565 mm
Weight: 35 kg	H _{max} = 353.5 mm

ISM15_MD_1(275_L), PCD 275 mm, Weight: 37 kg $L_{max} = 279 mm$ $W_{max} = 695 mm$ $H_{max} = 353.5 mm$

ISM15_MD_3, Weight: 13 kg $L_{max} = 274.9 mm$ $W_{max} = 182 mm$ $H_{max} = 353.5 mm$

136 TAVRIDA ELECTRIC

ISM15_Shell

ISM15_Shell_2(150_L), PCD 150 mm, Weight: 51 kg

 $L_{max} = 247 mm$ $W_{max} = 445 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(150_L) with CBkit_Shell15_1(205) installed*, PCD 150 mm, Weight: 59,5 kg

 $L_{max} = 343 mm$ $W_{max} = 445 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(210_L), PCD 210 mm, Weight: 52 kg

 $L_{max} = 247 mm$ $W_{max} = 565 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(210_L) with CBkit_Shell15_1(205) installed*, PCD 210 mm, Weight: 60,5 kg

 $L_{max} = 343 mm$ $W_{max} = 565 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(210_H), PCD 210 mm, Weight: 53 kg

 $L_{max} = 247 mm$ $W_{max} = 565 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(210_H) with CBkit_Shell15_1(310) installed*, PCD 210 mm, Weight: 61,5 kg

 $L_{max} = 343 mm$ $W_{max} = 565 mm$ $H_{max} = 560 mm$

ISM15_Shell_2(275_H), PCD 275 mm, Weight: 55 kg

 $L_{max} = 247 \text{ mm}$ $W_{max} = 695 \text{ mm}$ $H_{max} = 560 \text{ mm}$

ISM15_Shell_2(275_H) with CBkit_Shell15_1(310) installed*, PCD 275 mm, Weight: 63,5 kg

 $L_{max} = 343 \text{ mm}$ $W_{max} = 695 \text{ mm}$ $H_{max} = 560 \text{ mm}$

ISM15_HD

ISM15_HD_1(275), PCD 275 mm, Weight: 72 kg

L_{max} = 280 mm *W_{max}* = 700 *mm* $H_{max} = 632 mm$

ISM25_LD

ISM25_LD_1(210_Par2), PCD 210 mm Weight: 36 kg

 $L_{max} = 265 mm$ $W_{max} = 560 mm$ $H_{max} = 510 mm$

ISM25_LD_1(210_Par2) with CBkit_Ins_3 installed*, PCD 210 mm, Weight: 36,5 kg

 $L_{max} = 265 mm$ $W_{max} = 560 mm$ $H_{max} = 549 mm$

PCD 275 mm, Weight: 38,5 kg

*- upper busbars shown for reference and are not supplied.

W_{max} = 690 mm H_{max} = 549 mm

549

ISM25_LD_2(1), PCD 150 mm Weight: 35 kg

 $L_{max} = 265 mm$ $W_{max} = 440 mm$ $H_{max} = 474 mm$

PCD 150 mm Weight: 37 kg

 $L_{max} = 300 \text{ mm}$ $W_{max} = 440 \text{ mm}$ $H_{max} = 474 \text{ mm}$

ISM25_LD_3, Weight: 14 kg

 $L_{max} = 265 mm$ $W_{max} = 318 mm$ $H_{max} = 510 mm$

ISM25_LD_3 with CBkit_Ins_3 installed*, Weight: 14,5 kg

 $L_{max} = 265 mm$ $W_{max} = 318 mm$ $H_{max} = 549 mm$

*- upper busbar shown for reference and is not supplied.

ISM25_Shell

ISM25_Shell_2(210) with CBkit_Shell25_1 installed*, PCD 210 mm, Weight: 65,5 kg $L_{max} = 383 mm$ $W_{max} = 565 mm$ $H_{max} = 622 mm$

*- busbars shown for reference and are not supplied.

ISM25_Shell_2(275), PCD 275 mm, Weight: 55 kg $L_{max} = 278 mm$ $W_{max} = 695 mm$ $H_{max} = 591 mm$

ISM25_Shell_2(275) with CBkit_Shell25_1 installed*, PCD 275 mm, Weight: 67,5 kg $L_{max} = 383 mm$ $W_{max} = 695 mm$ $H_{max} = 622 mm$

*- busbars shown for reference and are not supplied.

Dimensions of Control Module

CM_16_1(Par1_Par2_Par3_Par4_Par5) Weight: 1 kg

 $L_{max} = 165 mm$ $W_{max} = 190 mm$ $H_{max} = 45 mm$

Dimensions of accessories

CBkit_PosInd_1(1000)

* 2 m for CBkit_PosInd_1(2000)

Dimensions of Manual Generator

CBunit_ManGen_1, CBunit_ ManGen_2

Dimensions of Interlocking Kits

Interlock is attached to the side of the ISM

CBkit_Interlock_1

CBkit_Interlock_3

ISM opened and locked (not latched state) ISM unlocked 156,2 142,2 30 117 133,2 107 22 65 Ø40 Mounting dimensions Ø26 55

Cable length (L) depending on the order

CBkit_Interlock_5

Appendix 3. Secondary Schemes

List of changes

Documents Version	Change Date	Scope of Change	Reason of Change	Version Author
1.0	25.08.2015	Document creation	-	may
1.1	01.10.2015	Document correction according to changes in the TES development procedure	TES MD request	may
1.2	07.10.2015	Front page pictures and text correction	TES MD request	may
1.3	30.10.2015	Really Malfunction functionality is changed from Malfunction to Malfunction OR Loss of supply Rated operating sequence is changed to O-0.3s-CO-10s- CO-10s-CO	TEG TD request	may
1.4	02.12.2015	Parameter name "Rated supply voltage of auxiliary circuits" change to "Rated auxiliary supply voltage" Change of relay 3 name from "Malfunction" to "Malfunction or Loss of auxiliary supply" and add- ing for relay "ISM main contact position" detailed description of its state change Amendment of Secondary schemes in Appendix 3	TES ED and TES TD requests	may
1.5	25.01.2016	Change of relays 1 and 2 contacts in the Table 10 from NC to NO and vice-versa	Mistype correction	may
1.6	05.05.2016	Adding of comment that CM's relay can have incor- rect state in case CM is not operable due to absence of auxiliary supply; Adding of description that USB port is not used in service; Adding of CBkit_Interlock_2 in scope of optional kits.	Mistype correction and TES MD request	may
1.7	09.11.2016	Photos on the page 45 were changed	There was obsolete ISM15_ Shell_1 on the photos	may
1.8	27.01.2018	Rated operating sequence at rated short-circuit breaking current elaboration; ISM15_Shell_2 in horizontal actuator position; Primary circuits contact resistance check elaboration;	Documentation elaboration; Mistypes correction;	may
9	11.09.2018	Adding of VCB15_MD1_16F and VCB15_HD1_16F; Mistakes correction	Product range change	may
10	21.02.2019	Mistypes correction	Documentation elaboration;	may
11	14.10.2019	Adding of VCB15_MD3_16.F. Change of VCB, ISM and CM classification. Removing of CBkit_Interlock_2, adding of CBkit_Interlock_8	Product range change	may
12	29.10.2019	Adding of the CBmount_CM_1	Product range change	may
13	28.02.2020	Adding of VCB15_LD8_16F, adding of interlocking kits drawings, mistypes correction	Product range change	Zhdi
14	20.04.2020	VCB15_LD8_16.F scope of supply change	Product range change	Zhdi
15	20.09.2021	Interlock interface for LD breakers added	Product range change	Zhdi
16	25.07.2022	Adding of VCB25_Shell2_16F Correction of the "CM terminal arrangement" table Division of the technical parameters table into VCB15 and VCB25	Product range change	may mariy

Europe

Tavrida Electric GmbH

Im Leimen 14, 88069 Tettnang, Germany Phone: +49 7542 94 678 51 Fax: +49 7542 94 678 61 E-mail: info@tavrida.de

South Africa

Tavrida Electric Africa (Pty) Ltd.

Unit 8, N12 Industrial Park, 188 Dr Vosloo Road, Bartlett, Boksburg, 1459 South Africa Phone: +27 11 9142199 Fax: +27 11 9142323 E-Mail: support@tavrida.co.za

North America

Tavrida Electric North America Inc.1105 Cliveden Ave.Delta, BC V3M 6G9 CanadaPhone:+1 (866) 551-8362E-mail:info@tavrida-na.com

Brazil

Tavrida Electric do Brazil

Av. Ireno da Silva Venâncio,199 GP04A - Protestantes Votorantim / SP, Brazil Phone: +55 (15) 3243-2555 Fax: +55 (15) 3243-4233 E-Mail: info@tavrida.com.br

Rest of the world

Tavrida Electric AG

Bahnhofstrasse 27, 6300 Zug, Switzerland Phone: + 49 7542 9467851 E-mail: TES_SM@tavrida.ch

www.tavrida.com

This document is copyright and is intended for users and distributors of Tavrida Electric product. It contains information that is the intellectual property of Tavrida Electric and the document, or any part thereof, should not be copied or reproduced in any form without written permission from Tavrida Electric.

Tavrida Electric applies a policy of ongoing development and reserves the right to change product without notice. Tavrida Electric does not accept any responsibility for loss or damage incurred as a result of acting or refraining from action based on information in this document.

Document code: TES_VCB15-25_Guide_UG(EN)_16